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Chapter 1

Introduction

1 General Introduction

This dissertation is based on three papers (Shimotsu and Phillips (2000a, 2000b), Phillips 

and Shimotsu (2000)) that have come out of joint research with Professor Peter C. B. 

Phillips during 1998-2000.

Fractional integration and the study of the so-called 1(d )  processes has recently at

tracted a good deal of attention amongst theorists and empirical researchers. Fractionally 

integrated processes accommodate a form of strong dependence in the autocorrelogram that 

is intermediate in intensity between the short memory displayed by weakly dependent time 

series (the so-called 1(0) processes) and the persistence of unit root time series (or / ( l )  

processes). Fractional models encompass both stationary and nonstationary processes de

pending on the value of the memory parameter, and include both 1(0) and / ( l )  processes 

as limiting cases when the memory parameter takes on the values zero and unity. For these 

reasons, fractional integration is attractive to empirical researchers, providing some libera

tion from the classical dichotomy of /(0 )  and / ( l )  processes. Growing evidence in applied 

work indicates that fractionally integrated processes can describe certain long range char

acteristics of economic data rather well, including the volatility o f financial asset returns, 

forward exchange market premia, interest rate differentials, and inflation rates.

Theoretical research on fractional processes has centered on the case where —5 < d <  5 . 

This is primarily because the process has a stationary and invertible representation when 

d is within this range. However, in many economic applications the process of interest 

lies close to the boundary between stationarity and nonstationartiy. Furthermore, many 

tests of economic hypotheses amount to tests of the stationarity o f a process or tests of

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

2

stationarity o f the deviations from equilibrium, as witnessed by the prevalence o f the unit 

root and cointegration approach in economics and econometrics. In order to deal with a 

nonstationary (i.e. d >  5 ) 1 (d )  time series, the existing literature defines the process as 

a partial sum of I  (d — I) processes. While this approach is not incorrect, it has several 

problems, one of which is that it employs different data generating mechanisms depending 

on the value of d, a parameter which is not known a priori and which we have to estimate 

from the data. This dissertation is based on an alternate model of fractionally integrated 

processes that is valid for all values of d  and aims to provide an inferential apparatus that 

uniformly covers values o f d  that are normally encountered in empirical applications.

2 Existing literature

The memory parameter d governs the strength o f long range dependence of a process and 

is often the focus of empirical interest. More specifically, the impulse response function of 

an I  (d) process with d  >  0 decays at the rate o f td~ l . This section provides a brief review 

of the literature on estimation of d to date. Robinson (1994b) and Baillie (1996) give more 

exhaustive reviews, although many new methods have been developed and advances has 

been made since then.

When we can parameterize the autocovariance structure of the process of interest com

pletely, such as in a fractionally integrated autoregressive moving average (ARFIMA(p, d, q)) 

model, the parameters can be estimated by maximum likelihood procedures. Under Gaus- 

sianity and when d  <  5 , exact maximum likelihood estim ation o f ARFIMA models was 

proposed by Sowell (1992). While the exact maximum likelihood estimator is theoretically 

attractive, it requires the inversion of a T  x T  covariance matrix, which is a nonlinear func

tion o f hypergeometric functions, at each iteration o f evaluation of the likelihood, which is 

costly even by present computing standards.

In terms of computational burden, W hittle’s (1951) approach of approximating the exact 

likelihood in the frequency domain is appealing. Fox and Taqqu (1986) and Dahlhaus (1989) 

show consistency and asymptotic normality of the approximate frequency domain maximum  

likelihood estimator for Gaussian processes with 0 <  d  <  5 . Giraitis and Surgailis (1990) 

prove asymptotic normality of the estimator for general non-Gaussian linear processes,
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whilst Hosoya (1996) extended the frequency domain estimator to  vector linear processes.

Although the two estimators are asymptotically equivalent, Cheung and Diebold (1994) 

find that their finite sample properties differ. When the mean of the process is known, 

the exact maximum likelihood estimator is substantially more efficient than the frequency 

domain estimator. On the other hand, when the mean of the process is unknown, which is 

typically the case, the performance of the two estimators is very similar. This is because the 

frequency domain estimator is invariant to  the mean of the process and strong dependence 

makes precise estimation of the mean difficult.

Martin and Wilkins (1999) propose indirect estimation m ethods for estim ating ARFIMA 

and VARFIMA models. The indirect estimator can be com putationally attractive, partic

ularly for multivariate VARFIMA models in which computation o f the covariance matrix 

becomes extremely difficult for general model specifications. It was shown that the indirect 

estimator generates similar small sample properties to the exact maximum likelihood esti

mator. Tanaka (1999) proposes another parametric estimator based on an alternate model 

of I  (d) processes. While this model is only asymptotically stationary even for — |  <  d <  

this estimator has the desirable feature that it provides a valid estim ator for all values of d.

In many cases, the persistence of a shock to the process is of central interest to empirical 

researchers. Then, semiparametric estimators become attractive, because in the parametric 

approach misspecification of the short-run dynamics, e.g. the form o f the ARMA model, 

leads to inconsistent estimates of d. The semiparametric approach focuses on estimation of 

d  by treating short-run dynamics of the process nonparametrically. Hence it is robust to 

misspecification of the short-run dynamics.

The most commonly used semiparametric estimator is log periodogram (LP) regres

sion. LP regression was proposed by Geweke and Porter-Hudak (1983). This estimator is 

based on a linear regression o f the ordinates of the log periodogram on the logarithm of a 

trigonometric function around the origin. It exploits the fact that the shape of the spectral 

density of an I  (d) process behaves like c \~ 2d for A ~  0 and is dominated by d. While the 

asym ptotic theory of Geweke and Porter-Hudak was incomplete, Robinson (1995a) proved 

consistency and asymptotic normality of a version of LP regression for d  €  (—5 , 5 ) and un

der Gaussianity. This version, originally hinted at by Kttnsch (1986), excludes periodogram
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ordinates immediately around the origin. Hurvich et al. (1998) further show that the omis

sion of lower frequencies is unnecessary and provide an optimal formula for the choice of the 

number of periodogram ordinates used in regression. Velasco (1999a) extends Robinson’s 

work to extend the range of d  in which valid inference is possible. Kim and Phillips (1999) 

develop a theory of LP regression for the nonstationary case, i.e. when d >

Another semiparametric estimator, the local W hittle estimator, maximizes the frequency 

domain Gaussian likelihood function that is localized to the neighborhood of the origin. The 

local W hittle estimator was proposed by Ktinsch (1987), and Robinson (1995b) showed its 

consistency and asymptotic normality for d  €  ( —3 , . While log periodogram regression

enjoys its popularity because of the simplicity of its construction as a linear regression 

estimator, the local W hittle estimator has some strong advantages, including the fact that 

its validity does not require Gaussianity and that it is more efficient than LP regression. 

Velasco (1999b) showed the local W hittle estimator is consistent and asymptotically normal 

for a wider range of d. Lobato (1999) extended local W hittle estimation to the multivariate 

case and established asymptotic equivalence of the multivariate local W hittle estimator and 

a two-step estimator, which uses consistent univariate estimates of d  for each series as the 

first step.

Robinson (1994a) proposed another semiparametric estimator based on averages of the 

periodogram and proved its consistency. Lobato and Robinson (1996) derived its limit 

distribution, but the estimator is asymptotically normal only for — 5 <  d  <  j  and it depends 

on a user-chosen number q in addition to  the width of the frequency band m. Recently, 

Moulines and Soulier (1999) propose another semiparametric estimator that approximates 

the spectral density of the process for A €  (0 ,7r) by A-2d and means of truncated Fourier 

series. This broadband estimator is shown to outperform other semiparametric estimators 

asymptotically, although its advantage in finite sample is not so clear.

An enormous volume of empirical research on fractional integration has now been pub

lished. What emerges from this large body of work is that evidence supporting fractional 

integration has been found for many economic and financial time series, such as inflation, 

the forward exchange rate premium, and stock return volatility. To give an exhaustive sur

vey is beyond the scope o f this introduction. The literature to the mid 1990’s is surveyed in
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Baillie (1996). Instead, we name here a few contributions that solved, or partially solved, 

empirical “puzzles” by reconciling the implication of economic theory with the characteris

tics of the observed data. In consumption function studies, Diebold and Rudebusch (1991) 

and Haubrich (1993) show that consumption is not “too  sm ooth” if the income process is 

modeled as a fractionally integrated process, providing a partial solution to the so-called 

“Deaton paradox.” Backus and Zin (1993) show that the term structure implied by com

monly used models matches the data if the short term interest rate is fractionally integrated. 

Maynard and Phillips (1998) demonstrate that the so-called forward premium puzzle is a 

result of imbalance in regression in w'hich an I  (0) process is regressed on an I  (d) process. 

Michelacci and Zaffaroni (2000) show that an augmented Solow model can generate a mean 

reverting but nonstationary growth pattern for each country, which explains why a unit 

root in output is often accepted in the time-series literature but a 2% rate of convergence 

of output is repeatedly found in cross-country studies.

3 Overview of the Dissertation

The second and third chapters of this dissertation are concerned with the semiparamet

ric estimation of the memory parameter in the nonstationary case. An I  (d ) process has 

a stationary and invertible representation when —\ < d < ^ .  For this range of d,  two 

commonly used semiparametric estimators (log periodogram regression, local W hittle esti

mation) are shown to be consistent and asymptotically normally distributed by Robinson 

(1995a, 1995b). When d >  the process is nonstationary and there are several ways of 

defining the observed series in terms of weakly dependent inputs. One model, which has 

been used in the existing literature, defines an I  (d) process with 5 <  rf <  |  as a partial 

sum of I  (d — 1) processes. According to this model, we can estimate d by taking first dif

ferences of the data, estim ating d — 1 , and adding one to  the estimate. Indeed, recent works 

by Velasco (1999a, 1999b) extend Robinson’s result to  show that those two semiparamet

ric estimators are consistent for — 5 <  d <  1 and asym ptotically normally distributed for 

— 5 <  d <  | .  Hence, if we apply this ‘differencing -+- adding-back’ approach, the estimator 

is consistent for \  <  d <  2 and asymptotically normally distributed for 5 <  d <  | .

However, this model and approach does have some shortcomings. First, it employs
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different data generating mechanisms depending on the value of d, e.g. whether d ^  

a parameter which is not known a priori and which we have to  estim ate from the data. 

Second, the model for d  >  5 obscures the relationship between the observed data and the 

component innovations. For example, an /  (0.7) process is defined as a cumulative sum of 

an I  {—0.3) process, and the motivation for this construction of economic data is unclear.

The approach taken in the second chapter is to define fractionally integrated processes 

as weighted sums of short-memory input variables, which are treated nonparametrically. 

This model gives a valid representation for all values of d  and enables us to treat the 

I  (d) processes uniformly without any discontinuity in the data generating mechanism. It 

also relates the observed series directly to  its component innovations, so that the impulse 

responses are just the weights on the short memory inputs. The two chapters use a new 

representation and approximation theory for the discrete Fourier transform o f a fractionally 

integrated time series (based on Phillips, 1999a) which provides us w ith a representation 

that is valid in both nonstationary and (asymptotically) stationary cases. It is particularly 

helpful in analyzing the asymptotic behavior of the discrete Fourier transform and, hence, 

the periodogram of nonstationary fractionally integrated time series.

W ith this representation theory in hand, the second chapter develops a limit theory for 

a new estimator of the memory parameter of a fractional process allowing for nonstationary 

values of d. The new estimator is called the modified local W hittle estim ator and employs 

a version of the Whittle likelihood based on frequencies adjacent to the origin and modified 

to take into account the form of the data generating mechanism in the frequency domain. 

The approach was suggested in Phillips (1999a) without any formal development of its 

properties or asymptotic behavior. This chapter takes up this study and demonstrates 

that the modified local W hittle estim ator is consistent for d €  (0 ,2 ) and asymptotically 

normally distributed with variance 5 for d €  ( 5 , §) and d €  (§ , | )  . For d  €  [ f> 2 ), the 

limit distribution is nonnormal and the rate of convergence decreases. Thus, the approach 

allows for likelihood-based inference about d  in a context that allows for nonstationarity, 

using a limit theory that is equivalent to that which applies in the stationary region for the 

unmodified W hittle estimator (Robinson, 1995b). In this respect, our theory complements 

recent work by Velasco (1999b), extending further the domain of d  where valid inference is
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possible.

The third chapter studies the asymptotic properties of the local W hittle estimator in the 

nonstationary case for d  G ( 5 , 2 ), including the unit root case and the case where the process 

has a linear time trend. These cases are of high importance in empirical work especially 

with economic time series, which commonly exhibit nonstationary behavior and show some 

evidence of deterministic trends as well as long range dependence. The asymptotic prop

erties of the local W hittle estimator in the nonstationary case over the region d G ( 5 , 1) 

were explored in Velasco (1999b). Velasco also showed that, upon adequate tapering of 

the observations, the region of consistent estimation of d  may be extended but with corre

sponding increases in the variance of the limit distribution. For the region d  >  1, there is 

presently no theory for the untapered W hittle estimator and, for the region d  G (5 ,1 ), no 

limit distribution theory. The unit root case is of particular interest because it stands as 

an important special case of an 1(d) process with d — 1 and it has played a central role in 

the study of nonstationary economic time series. It is also now known to be the borderline 

that separates cases o f consistent and inconsistent estimation by LP regression (Kim and 

Phillips, 1999) and, as we shall show here, local W hittle estimation.

This chapter demonstrates that the local W hittle estimator (i) is consistent for d G ( 5 , 1],

(ii) is asymptotically normally distributed for d G (5 , | ) ,  (iii) is asymptotically distributed 

as a square of fractional Brownian motion for d  G ( | ,  1), (iv) has a mixed normal limit dis

tribution for d  =  1, (v) converges to unity in probability for d G (1 ,2 ) , and (vi) converges 

to unity in probability when the process has a linear time trend. This chapter, therefore, 

complements the earlier work o f Robinson (1995b) and Velasco (1999b) and largely com

pletes the study of the asymptotic properties of the local W hittle estimator for regions of 

d that are empirically relevant in most applications. This chapter also serves as a counter

part to Phillips (1999b) and Kim and Phillips (1999), which analyze the asymptotics of LP 

regression for d  G (5 ,2 ).

The fourth chapter proposes a new estimation method for the memory parameter of a  

stationary fractionally integrated process. The most common estimator of the memory pa

rameter in the stationary case is provided by log periodogram regression. The conventional 

log periodogram regression estimator uses the periodogram ordinates only in a frequency
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band As =  2n/ n , 2Ttm/n which shrinks to the origin (i.e. m /n  —♦ 0 ) as the sample size 

increases. This shrinking process allows the estimator to achieve consistency and asymp

totic normality while at the same time leaving the short-memory property of the process 

unspecified. However, the periodogram at higher frequencies As (s =  m  +  1 ,..., [n/2]) con

tinues to contain some information about the memory parameter. This intuition indicates 

that the conventional log periodogram regression estimator may discard some information 

in the data and gains may be achieved by using a wider frequency band while preserving 

the nonparametric property of the log periodogram regression estimator.

Accordingly, this chapter proposes a procedure for estim ating d that builds on this idea. 

The method is a pooled log periodogram regression that is taken over the wider band of 

frequencies As =  =  l , . . . , m i  with L  —► oo and m L /n  —* 0. This method corrects

for variation in the regression intercept by taking subgroup means in the regression. The 

estimator of d pools the information about d  obtained within each (shrinking) band over 

which the error spectrum is effectively constant as n —» oo. We therefore call the new 

estimator a pooled log periodogram regression estimator. The pooled estimator is shown to 

be consistent and asymptotically normally distributed. The pooled estimator has a smaller 

asymptotic variance than the conventional log periodogram regression estimator, reflecting 

the greater number of periodogram ordinates used in the regression, but it also has larger 

asymptotic bias because of the nonconstancy of the error spectrum.

Simulations show that the pooled estimator has advantages over the conventional log 

periodogram regression estimator in finite samples, because the use of a wider frequency 

band (m (L  +  l)  rather than m) makes it less sensitive to the presence of peaks in the 

underlying spectral density. At the same time, it avoids the extremely large bias that is 

typical of the log periodogram regression estimator when a wide frequency band is employed. 

Therefore, it provides us with an alternate way of using a wider frequency band in log 

periodogram regression and a way to use more information, making the estimator more 

robust to various shapes in the short memory' spectrum.
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Chapter 2

Modified Local Whittle Estimation of the 
Memory Parameter in the Nonstationary 
Case

1 Introduction

Fractional integration and the study of the so-called I  (d) processes has recently attracted 

a good deal of attention amongst theorists and empirical researchers. In applied economet

ric work, 1 (d )  processes with fractional d >  0  have been found to provide good empirical 

models for certain financial time series and volatility measures, as well as certain macro

economic time series like inflation and interest rates. Fractional processes accommodate 

temporal dependence in a time series that is intermediate in form between short-memory 

series (the so-called / ( 0 )  processes) and unit root time series ( / ( l )  processes). Fractional 

models encompass both stationary and nonstationary processes depending on the value of 

the memory parameter, and include both / ( 0 ) and / ( l )  processes as lim iting cases when 

the memory parameter takes on the values zero and unity. For these reasons, fractional in

tegration is attractive to empirical researchers, providing some liberation from the classical 

dichotomy of I  (0 ) and 1(1) processes. Growing evidence in applied work indicates that 

fractionally integrated processes can describe certain long range characteristics of economic 

data rather well, including the volatility o f financial asset returns, forward exchange market 

premia, interest rate differentials, and inflation rates.

The memory parameter, <£, plays a central role in the definition of fractional integration 

and is often the focus of empirical interest. W hen — 5 <  d <  5 , the process has a stationary 

representation. For this range of d, two commonly used semiparametric estim ators (log peri

odogram regression, local W hittle estimator) are shown to be consistent and asymptotically
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normally distributed by Robinson (1995a, 1995b). When d  >  5, the process is nonstation

ary and there are several ways of defining the observed series in terms of weakly dependent 

inputs. One model, which has been used in the existing literature, defines an I  (d) process 

with |  <  d  <  |  as a partial sum of I  (d  — 1) processes. According to this model, we can 

estimate d by taking first differences of the data, estimating d  — 1, and adding one to the 

estimate. Indeed, recent works by Velasco (1999a, 1999b)1 extend Robinson’s result to show 

that those two semiparametric estimators are consistent for <  d  <  1 and asymptotically 

normally distributed for — ̂  <  d <  Hence, if we apply this ‘differencing +  adding-back’ 

approach, the estimator is consistent for 5 <  d <  2 and asymptotically normally distributed 

for  ̂ <  d  <

However, this model and approach does have some shortcomings. First, it employs 

different data generating mechanisms depending on the value of d, e.g. whether d ^  5 , 

a parameter which is not known a priori and which we have to estimate from the data. 

Second, the model for d  >  5 obscures the relationship between the observed data and the 

component innovations. For example, an I  (0.7) process is defined as a cumulative sum of 

an I  (—0.3) process, and the motivation for this construction of economic data is unclear. 

Appendix C in Section 9 of this chapter provides some further discussion of these issues and 

various alternate models of fractional integration, including the model used here and another 

model that works from distant past rather than infinite past or fixed point initializations.

The approach taken in the present chapter is to define fractionally integrated processes 

as weighted sums of short-memory input variables, which are treated nonparametrically2. 

This model gives a valid representation for all values o f d  and enables us to treat the 

I  (d) processes uniformly without any discontinuity in the data generating mechanism. It 

also relates the observed series directly to its component innovations, so that the impulse 

responses are just the weights on the short memory inputs. This chapter uses a new rep

resentation and approximation theory for the discrete Fourier transform of a fractionally 

integrated time series (based on Phillips, 1999) which provides us with a representation

'Velasco (1999a, 1999b) also show th a t the use of d a ta  tapering makes the  estim ators consistent and 
asym ptotically normally d istribu ted  for —5  < d <  | ,  albeit a t  the cost of an  increase in variance.

2Tanaka (1999) uses a  fully param etric version of this model and shows th a t the  MLE of d is consistent 
and asym ptotically normally d istribu ted  for any values of d.
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that is valid in both nonstationary and (asymptotically) stationary cases. It is particularly 

helpful in analyzing the asymptotic behavior of the discrete Fourier transform and, hence, 

the periodogram of nonstationary fractionally integrated time series. So, it provides the 

key element in developing our theory and motivating the estimator we will use.

With this representation theory in hand, we develop a limit theory for a new estimator 

of the memory parameter of a fractional process allowing for nonstationary values of d. 

The new estimator is called the modified local W hittle estimator and employs a version 

of the W hittle likelihood based on frequencies adjacent to the origin and modified to take 

into account the form of the data generating mechanism in the frequency domain. The ap

proach was suggested in Phillips (1999) without any formal development of its properties or 

asymptotic behavior. This chapter takes up this study and demonstrates that the modified 

local W hittle estimator is consistent for d e  (0 ,2 ) and asymptotically normally distributed 

with variance \  for d  6  (^, §) and d  6  (§ , | )  . For d  G [ | , 2 ) , the limit distribution is 

nonnormal and the rate o f convergence decreases. Thus, the approach allows for likelihood- 

based inference about d in a context that allows for nonstationarity, using a limit theory 

that is equivalent to that which applies in the stationary region for the unmodified W hittle 

estimator (Robinson, 1995b). In this respect, our theory complements recent work by Ve

lasco (1999a), extending further the domain o f d  where valid inference is possible. Phillips 

(1999) proposes another semiparametric estimator of d  (an exact local W hittle estimator) 

that requires no prior information on the value o f d. While the derivation o f an asymptotic 

theory for the exact local Whittle estimator is very difficult, that of the modified W hittle 

estimator is much more feasible. Part of the motivation for the modified W hittle estimator 

is that it is constructed to minimize an objective function that approximates that of the 

exact local W hittle estimator. The analysis of this estimator therefore serves as a stepping 

stone towards a more general theory of estimation of d. Additionally, the modified estimator 

is related to an alternate ‘differencing +  adding-back’ estimator and can be motivated in 

terms of this approach as well.

The remainder of this chapter is organized as follows. The new representation and 

approximation theory that we need are developed in Section 2. Section 3 defines the modified
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local W hittle estimator and proves its consistency. Section 4 demonstrates asymptotic 

normality. Section 5 reports some simulation results and gives an empirical illustration. 

Section 6 concludes the chapter. Some technical results are given in Appendix A in Section 

7. Proofs are collected together in Appendix B in Section 8 . Some alternative nonstationary 

representations are discussed in Appendix C in Section 9.

2 Preliminary Representation Theory and Asymptotics

2.1 A  M odel o f N on station ary  Fractional In tegration

We consider the fractional process Xt generated by the model

(1 -  L)d (Xt -  X q) = ut, t  =  0, 1,2,... (1)

where X q is a random variable w ith a certain fixed distribution. Our interest is primarily 

in the case where Xt is nonstationary and 5 <  d <  2 , so in ( 1) we work from a given initial 

date t =  0 , set ut =  0  for all t <  0 , and assume that ut (t >  1) is stationary with zero mean 

and continuous spectrum / u(A) >  0. Expanding the binomial in (1) gives the form

J 2 ^ ^ ( X t - k - X 0) = u t, (2)
k=0

where

(■<0* =  T r ( d f ) =  m d + 1  ) . . . { d + k  - 1).

is Pochhammer’s symbol for the forward factorial function and T (•) is the gamma function. 

When d  is a positive integer, the series in (2) terminates, giving the usual formulae for the 

model (1) in terms of the differences and higher order differences o f X t. An alternate form 

for X t is obtained by inversion of ( 1 ), giving

X t = ( 1 -  L)~d ut +  x 0 =  J 2  + x °- (3)
k-Q

This model gives a valid representation for all values of d. W hen d > 5, Xt is nonstation

ary, while X t is asymptotically stationary when 0 < d < 5 . The impulse responses of Xt to 

unit changes in ut~k are given directly in (3) and we may similarly obtain impulse responses 

to unit changes in innovations in ut using (3) in conjunction w ith (4) below. Further, the
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above formulation is convenient for the construction of the likelihood and an estimator of 

d  using a likelihood-based approach is developed in Section 3.

Throughout this chapter it will be convenient to assume that the stationary component 

ut in ( 1) is a linear process o f the form
oo oo

ut =  C  (L) e t =  ^ 2  Cj£t- j ,  j  \cj\ <  oo, C  (1) ^  0, (4)
j=  0 j=o

for all t and with et =  i id  (0, cr2) and E e\ =  fi4 <  oo. The summability condition in (4)

is satisfied by a wide class of parametric and nonparametric models for ut and enables the

use of the techniques in Phillips and Solo (1992). Under (4), the spectral density of ut 
2 . . .  2

is /u(A) =  o cj e*J • sPite ° f  its generality, the specificity of the linear process

form (4) is much more restrictive than the local assumptions about / u(A) at A =  0 that 

are used in other work, notably Robinson (1995b), and which reflect the local nature o f the 

semiparametric problem of estimation of the memory parameter d.

Define the discrete Fourier transform (dft) of a tim e series at evaluated at the funda

mental frequencies as

w a (As) =  —X =  y Z  ate'tx‘ , A* =  s =  1 ,..., n. (5)
V27m n

Our approach is to algebraically manipulate (2) so that it can be rewritten in a convenient 

form to accommodate d ft’s. The following Lemma by Phillips (1999) provides an exact 

representation of w u (A) in terms of functions of the data Xt-

2.2  Lem m a

If X t follows (1), then

Wu (A) =  wx (A) D n ( e iA; d ) -  (xX0 (d) -  einXX Xn (d ))  +  ~^L =  ^  e'tx , (6 )

where Dn (e‘x;d) and

Xx „ (d ) =  D n x ^ L t d )  X„  =  ' £ d ipe~i’* X „ - p, dxr =  ^
p=0 fc=p+l

The expression (6 ) may be interpreted as a frequency domain version of the original model 

(1). We can introduce a new transform

(A,; d ) =  w x (A,) -  D n (e iX- ; d ) - ^ = =  ( x A.o (d ) -  X x. n (d ))  , (7)
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for which

vx (Aa> d) =  D n  *! Wu (Aj) >

holds exactly. While this representation gives an exact relationship, the terms X \o (d) and 

X \ n (d ) in the right hand side of (7) contain involved functions o f X t and d. This makes 

asymptotic analysis very difficult, and hence it is useful to find approximations of them both 

for developing asymptotics and for suggesting simplified procedures. The following lemma 

gives another representation that forms the basis of the approximation in frequency domain 

form.

2.3 Lem m a

(a) If X t follows (1), then

wx (A) ( l  -  e,A) =  D n (e iA; / )  (A) -  ( / )  -  - | L  (e inAX n -  X 0)  , (8 )

where D n (e,A; / )  =  £fc=o f  =  1 -  d, and

Uxn (/) -  DnX (e~'xL; / ) « „  =  £  / a p ^ V - p ,  fxP = £  ^
p= 0 fc=p-f-l

/ /  Xt follows (1)  with d =  1, then

wx (A) ( l  -  elA)  =  mu (A) -  - | L  (et>lAX n -  X 0)  . (10)

The representation (8 ) results from algebraic manipulation and hence is valid for all 

values of d. However, the value of d  affects the order of magnitude of the terms UXn ( / )  and 

X n and, consequently, it affects the extent to which the (normalized) dft of the observed

data, wx (A ), can provide an approximation of the dft of the component innovations, wu (A ).

2.4 T he M odified D iscrete Fourier Transform

The representation (8 ) suggests the use of the quantity

x„  — Xq
Vi  (Aa) ~  Wx (Aa) +  1 -  c« .  

1
(1 -  e'"A)

D n (e iX; / )  wu (A) -  - ^ = U Xn ( /)  
' '  v27rn (11)
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and Iv (Xj) = vx (Xa) vx (Aa)* to approximate vx (Aa; d) and /„ (Xs; d ) = vx (Aa; d) vx (Aa; d)’ . 

This is done by approximating X \ to(d) and X \ , n (d) by D n (e,A*; d) ( l  — e‘A*) 1 elX,Xo 

and D n (elA*; d) ( l  — e iA,) _1 elX,X n. We call vx (Aa) and Iv (Aa) the modified discrete Fourier 

transform  and modified periodogram, respectively. In the following, we confine our attention  

to the case d  €  (0 , 2 ) ,  which is the range of values of d  commonly encountered in applied 

economic work. Indeed, for this range of values o f d  and for the frequencies in the vicinity 

of the origin, the second term in (11) becomes negligible compared with the first term, and 

the (normalized) modified periodogram is well approximated by the periodogram of ut and 

hence s t . The following lemmas establish this relationship and they are used in the following 

sections to examine the asymptotic behavior of the modified local W hittle estimator.

2 .5  L e m m a

Let EXn ( / )  =  5I£=o J \Pe~ipX£n-p-

(a) For d €  ( 5 , §) \ { 1 } ,

Xdsvx (As) =  e f ' ( 1 )  u;£ (As) -  +  r“n +  r*n (d) +  < n (d) ,

|2 ^ / x 2\ / j\ |2where E  |r“n | =  O  (A,) , E  |r*>n (d) \ = 0  (s 2d 4) , and

E \r c M l2 -  /  ° ( s2d 2nl " ) ’ f o r d e d  1) ,  
*  I s>n W l -  {  o  , for  d  €  ( l ,  §) ,

uniformly in s.

( b ) F o r d e ( H ) \ {  1 } ,

* }vx (A.) =  e f  *‘C  (1) w£ (A.) 4- r“n +  (d) ,

where E  jr“ n |2 =  O  (A^) and

E  r b ( d /  - {  °  ’ f ° r  d  €  J) ’E r 3>n{d)| -  j  0 (aM_3)t / o r d € ( i , | J ,

uniformly in s.

(c) For d =  1,

AsUi (Aa) =  iC  (1) (Aa) -+- ran , 

where E  |r“ n |2 =  O (Xa) uniformly in s.
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(d) For d  €  (0, i ]  ,

A?ux (A,) =  e f 'dtC  (1) w£ (Aa) +  r“n +  r*n ( d ) ,

where E  |r“ n |2 =  O  (A*) and E  [r*n (d ) \ 2 =  O (s2d~2 nl~2d logn ) uniform ly in s.

(e) For d  e  [§ ,2 ) ,

AjUx (Aa) =  e%diC  (1) we (As) +  r“ n +  r* n (d) +  rf>n ( d ) ,

where E  |r“ „ |2 =  O  (A*) , E  |r*„ (d>|2 =  O  («“ -< logn ), ani  E  |rj,„ (d) \2 =  O  ( s ^ n  

uniformly in s.

2.6 Corollary

(a) For d  €  ( 5 , | )  \  {1} ,

A f / „ ( A a )  =
A ^ C ( l ) £ A. n ( / )  2

where E\R*a%n\ = 0  (A.), E  « n (d) \ =  O  (sd~2) , and

(  o ( s d l n 5 d)  , for  d e  (5, l) , 
E  IK n  (d) |  =  |  o  ^ ? f o r d G  3 )  5

uniformly in s.

(b) For d & (51 §) \  {1} 1

AldIv (Aa) =  |C  ( 1 ) | 2 h  (As) +  RS,n +  i^ ,n  (d ) , 

tu/zere / a (As) =  wa (As) wa (Aa)* , £  |-R?,n | =  O (As) , and

IT Bb fAh _  /  0  ’ f °r d €  (£• X) *
|  Q  ^gd~ 5 for d e  (1, §) ,

uniformly in s.

(c) For d  =  1,

A2/„ (A,) =  \C  (1)|2 1£ (A,) +  i%n,

where E  |/2^>n| =  0 (A S) uniformly in s.

(d) For d  € (0, 5 ] ,

A */* (Aa) =  \C  (1) |2 Ie (Aa) +  +  < „  (d) +  (d) ,
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where E  |i% n | =  O  (A .) , E  | i £ n (d)| =  O { s d~lnh~d ( lo g n )* )  , and E  [ i £ n (d)[ =

O (ys 2d~2 n l~2d log n) uniformly in s.

(e) For d  6  [ § ,2 ) ,

A“ /„ (A.) =  |C  (1) |2 h  (Aa) +  JS,n +  fl* n (d) +  i% „ (d) +  (d) +  E?,n (d ),

where

E |f% n | =  0 ( A ,) ,  ̂ W .n | = o ( s d" 2 ( lo g n )a ) , E  |f% n | =  O  ( s ^ r T * )  ,
E  |-Rf,n | =  O  (s2d-4 lo g n ) , E  |E?,„| =  O  (s2d_2n _1) ,

uniformly in s.

3 Modified Local Gaussian Estimation: Consistency

We propose a new estimator of d  which is based on maximization of the likelihood function 

of ut- Our concern is with the case where little is known about the short memory component 

process Ut and its spectrum f u (A) is treated nonparametrically. This is accomplished by 

working with a set of m  frequencies (Aa =  : s  =  1 ,.... m } that shrink slowly to origin as

the sample size n —* ex, and this makes the resulting estim ator free from misspecification 

of dynamics of the component process ut .

The (negative) W hittle likelihood based on frequencies up to Am and up to scale multi

plication is

g ™ > + f :£&}• <12>
where m  is a number such that ^  +  ^ - » O a s n - *  oo. Using the relationship (7), we 

can transform (12) to be data dependent, in conjunction with the local approximation 

fu. (Ay) ~  fu  (0) =  G. This yields the objective function (Phillips, 1999)

K m ( G , d )  =  ± f 2  log ( \D n ( e ^ ; d ) |~ 2 c )  +  ^  ̂ -Iv (Ay;d)
j =i L v '

The estimator of d  that minimizes K m (G, d) does not rely on approximations of the discrete 

Fourier transform and may be expected to provide good semiparametric estimates for all 

values of d. The examination of the asymptotics is very difficult, however, so we apply the 

approximate relationship

Iv (Ay) ~  /„ (Ay; d ) , D n (e iX>; d ) ~  Xd,
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(13)

to obtain the objective function

1 m A2d
Qm  (G, d) =  -  ] T  log (GATM)  +  -± -I v (Ay)

L
We call this expression the modified local Whittle likelihood function , because it is obtained 

by replacing the periodogram ordinates, Ix (Ay) in the local W hittle likelihood function 

(Kvinsch (1987), Robinson (1995b))

&
Q-m (C, d) =  i  £  log (G A -M)  +  (A,)

j= i L

by the modified periodogram ordinates, Iv (Ay) .

We propose to estimate G  and d  by minimising Q m (G, d ) , so that

(14)

( G , d )  =  arg min Q m (G. d) ,
\  /  0<G<oo,0< c< o o , dee

where © =  [A i, A 2] and A i and A 2 are numbers such that 0 <  A i <  A 2 <  00 . The number 

A i can be chosen as close to zero as may be desired. It will be convenient in what follows 

to distinguish the true values of the parameters by the notation Go =  fu  (0 ) and do- 

Concentrating (13) with respect to G, we find that the estimate d  satisfies

d  =  arg min R (d),
d

where - m 1 m
R  (d) =  log G  (d) -  2 d — S '  log Aj ,  G ( d )  =  - y  Af l v (A7) .

j = i

The following results show that d  is consistent in both the (asymptotically) stationary 

and nonstationary cases. When do €  ( 5 , §) , no condition is required on the rate of ex

pansion of m. When do €  [§, 2) , an additional condition ^  +  m2^ - 2 —* 0 is necessary in 

order to achieve consistency. This condition is fairly weak, though, because m  =  0  (n0 5) is 

sufficient even when the condition is strongest, i.e. when do =  2. W hen do €  [A i, 5 ], how

ever, the rate condition on m  becomes stringent. Then, the condition  ------1 fo£itfog.m —► 0

implies that m has to grow fast for d  to be consistent, and it will be difficult to satisfy when 

A i is small.
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3.1 T h eorem

If ^  +  ^ - * 0 < w n - *  oo, then , fo r do €  (5 , §) , d  —*p do as n —* 00.

3.2 T h eorem

If do e [|, 2) and ^  +- ^  4- m-̂ >— —► 0 as n —► 00 fo r  some a  >  0, then, d —*p do.

3.3 T heorem

If do e  [Ai, £] and ^  ^  + -~~2At 1̂ Bni°Sm — 0 as n -*  00 , then, d -*p do.

3.4 T h eorem

If d —*p do as n  —» <xi, then, G  (dtj —*p Go-

3.5 R em arks

(a) Using the result from Corbae, Ouliaris and Phillips (1999), it is straightforward to show, 

for X t =  t, that

vt (As) =  —j = =  5 3  te‘X,t +  1 6 ix— 7 f =  =  °- \Z2irn “  1 — e * \Z2ttn\Z2irn  ̂ 1 — e,A' y/fyrn

Hence, the modified discrete Fourier transform and the modified local W hittle estimator 

are invariant to a linear trend.

(b) Interestingly, the modified estimator, which is derived above from the frequency domain 

data generating mechanism, is closely related to the ordinary W hittle estimator with the 

first differenced data. Indeed, it can be shown that, when d — do >  —5 , Q m( G , d )  =  

QmAX (G, <5) +  op (1) holds where 8  =  d  — 1 and

1 m " X26
Q'mAX (G, S) =  ±  5 3  log ( g A -25)  +  (A,)

J=1

which is the objective function of the local W hittle estim ator with first differenced data.
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4 Modified Local Gaussian Estimation: Asymptotic Normal
ity

The following theorems establish asymptotic normality of the modified local Whittle esti

mator for do €  ( | ,  | )  \  { § }  under somewhat stronger conditions on the expansion rate of 

m.

4.1 Theorem

V  m +  m  ̂ngm —► 0  as n  —► 0 0 , then, for  do € ( 5 , l] , we have

m5 (d  — do j  => N  ^0, ^  .

m +  +  m2d° l̂ logm- ► 0 as n —* 00 , then, fo r  do €  ( l ,  § ) ,  we have

^d — doj => N  ^0, ^  .

4.2  Theorem

If  ^  -I- ^  -f ^Sm —► 0 as n  —► 00 for some a  >  0, then, fo r  do €  (§ , 5 ) , we have

m 5 (d  — do j  => N  ^0, .

4.3  Rem arks

(a) The variance of the limiting distribution is the same as in the stationary case (see 

Robinson (1995b)).
3

(b) The rate condition T -|_r? _jggm _» 0 corresponds to assumption A4' of Robinson (1995b) 

with 0  =  1. Indeed, since C  (e,A) is differentiable with a bounded derivative, if we define 

fx  (A) =  | l  — elX\~2d \C  (e*A) |2 , then it follows that f x (A) =  |C  (1 ) |2 X~2d (1 -I- O (A)).

(c) An additional condition on the rate of m,  ► 0 , becomes necessary when
3

do 6  ( l ,  | ) . When do <  §, this condition is redundant because it is dominated by m —» 

0. Indeed, this is a fairly weak condition, because m lo g m  =  o (n0 5) is sufficient for it to 

hold even when it is strongest, i.e. when do =  §.

When do €  [ | ,  2) , d has a nonnormal distribution and the rate of convergence decreases.
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4.4 Theorem

V  m ■*" mT ■*" l ^ m +  -------- > 0  as n —► oo for some a  >  0 , then

(a) For do =  |  , if  E  |et |p <  oo for p >  4,

y / T n ( d - d o) +  £2,

where

<f2 ^ (2 7 r )-5  5 _ i ( l ) 2 .

(b) For do e  ( j , 2 )  ,

, , , 4 - ^ f r  l \  ( 2  -  * >  C l *
m  ( ■ ' - * ; = ►  (2do — 3 )2 '

5 Simulations and an Empirical Illustration

This section reports some simulations that were conducted to examine the finite sample 

performance of the modified local W hittle estimator (hereafter, modified estimator) and the 

unmodified local W hittle estimator (hereafter, unmodified estim ator), though no theoretical 

results are available yet for the unmodified estimator. We generate I  (d ) processes according 

to (3) with Xo =  0 and ut ~  iid N  (0 ,1). The bias, standard deviation, and mean squared 

error (MSE) were computed using 1,000 replications. Sample size and m  were chosen to be 

n =  500 and m =  n“ with a  =  0.55, 0.65, and 0.75, respectively.

Tables 1 and 2 show the simulation results. For values of d  smaller than 0.5, the 

modified estimator has positive bias, and the bias decreases as m  increases. This confirms 

the theoretical result that a large value of m  is required to achieve consistency when d  <  0.5. 

For all values of d, its standard deviation is larger than the theoretical value, and becomes 

very large when d =  0.2. The unmodified estimator has little bias when d <  1.0, but has 

a large negative bias and larger variance when d >  1.2 (see also Velasco (1999a)). For the 

value 0.6 <  d <  1.0, the variance of the two estimators are almost equal. In sum, the 

modified estimator gives better estimates of d unless there is a strong prior belief that the 

value of d is smaller than 0.5.
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Table 1. Modified local W hittle estimator: n =  500, m  =  n “
q =  0.55 (m  =  30) a  =  0.65 (m =  56) a  =  0.75 (m =  105)

Theoretical s.d..=  0.0913 Theoretical s.d.== 0.0668 Theoretical s.d. =  0.0488
bias s.d. MSE bias s.d. MSE bias s.d. MSE

d= 0.2 0.1325 0.1608 0.0434 0.0939 0.1157 0.0222 0.0634 0.0837 0.0110
d=0A 0.0445 0.1278 0.0183 0.0269 0.0877 0.0084 0.0111 0.0621 0.0040tooII13 0.0018 0.1163 0.0135 -0.0016 0.0784 0.0062 -0.0092 0.0530 0.0029
<f=0.8 -0.0146 0.1111 0.0126 -0.0124 0.0774 0.0061 -0.0186 0.0542 0.0033
d = 1.0 -0.0133 0.1131 0.0130 -0.0116 0.0762 0.0059 -0.0212 0.0518 0.0031
d = 1.2 -0.0122 0.1125 0.0128 -0.0139 0.0752 0.0058 -0.0262 0.0512 0.0033
d = 1.4 -0.0143 0.1201 0.0146 -0.0143 0.0788 0.0064 -0.0279 0.0555 0.0039
d = 1.6 0.0015 0.1200 0.0144 -0.0045 0.0806 0.0065 -0.0246 0.0551 0.0036
rf=1.8 0.0203 0.1219 0.0153 0.0112 0.0809 0.0067 -0.0145 0.0586 0.0036

Note: The theoretical s.d. is valid for 0 .6  <  d <  1.6 .

Table 2. Local W hittle estimator: n  =  500., m  =  nQ
a  =  0.55 (m  =  30) a  =  0.65 (m =  56) a  =  0.75 (m =  105)

Theoretical s.d. =  0.0913 Theoretical s.d.== 0.0668 Theoretical s.d.== 0.0488
bias s.d. MSE bias s.d. MSE bias s.d. MSE

cf=0.2 -0.0147 0.1151 0.0135 -0.0091 0.0773 0.0061 -0.0080 0.0545 0.0030
cf=0.4 -0.0015 0.1146 0.0131 -0.0043 0.0770 0.0059 -0.0101 0.0525 0.0029
cf= 0.6 0.0042 0.1161 0.0135 0.0018 0.0789 0.0062 -0.0054 0.0544 0.0030
d= 0.8 0.0138 0.1143 0.0132 0.0127 0.0805 0.0066 0.0024 0.0588 0.0035
d = 1.0 -0.0103 0.1048 0.0111 -0.0098 0.0695 0.0049 -0.0204 0.0469 0.0026
d = 1.2 -0.1127 0.1079 0.0244 -0.1211 0.0825 0.0215 -0.1400 0.0712 0.0247
<f=1.4 -0.2933 0.1265 0.1020 -0.3128 0.1094 0.1098 -0.3399 0.0994 0.1254
<1= 1.6 -0.4953 0.1482 0.2673 -0.5191 0.1330 0.2872 -0.5494 0.1176 0.3157
d = 1. 8 -0.7124 0.1533 0.5310 -0.7370 0.1314 0.5605 -0.7666 0.1104 0.5999

Note: The theoretical s.d. is the one for the modified W hittle estimator.

Figure 1 plots the empirical probability distribution function of the modified and un

modified estimator for the values of d =  0 .3 ,0 .7 ,1 .3 ,1 .9 . The sample size and m were 

chosen as n =  500, m  =  n0 65 =  56, and 10,000 replications are used. When d  =  0.3, the 

distribution of the modified estimator is positively biased, whereas both estimators have 

an approximately unbiased normal pdf when d  =  0.7. W hen d  is larger than unity, the 

modified estimator still works well, whereas the unmodified estim ator appears to converge 

to 1. The convergence to the squared fractional Brownian motion, which theoretically will 

occur when d — 1.9, does not show up with this sample size.

As an empirical illustration, the modified local W hittle estim ator was applied to the 

logarithm of the monthly UK wholesale price index. The series constituted 797 observations
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Figure 1: Modified and unmodified local W hittle estim ates

over the period 1885:1*1951:5. The first panel of Figure 2 graphs the series. The second 

panel of Figure 2 plots d for different values o f m  (specifically, m  =  n 0 5, ..., n0 65 were used). 

As m  increases, d  initially increases and then stays around the same level. The estimates 

of the memory parameter over the stable area are in the region (1.3,1.4) ,  indicating the 

series is I  (d) w ith d  >  1. The third panel shows the residual fractionally differenced series 

ut =  (1 — L )d (X t — X o ) , where d is the estim ate with m  =  n0 6. The spectral density 

estim ates of ut are displayed in the fourth panel.

6 Conclusion

This chapter explores the properties of a  new semiparametric estimator, the modified local 

W hittle estimator, of the memory parameter in models of fractional integration. An alter

nate model of fractionally integrated processes that has some advantages as a generating 

mechanism is employed, and some new representation theory for the discrete Fourier trans

form of a fractional process is used to assist in the analysis. The new estimator is simple and 

convenient to use and involves only a minor adjustment over the well known local Whittle 

estimator. The limit theory for the modified estimator covers a range of values of d  that is
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Figure 2: Wholesale price index data and estimates of d

commonly encountered in applied work with economic data and is the same as that which 

is known to apply to the local W hittle estimator in the stationary range. It is therefore 

more efficient than the modified log periodogram regression estimator analysed in Kim and 

Phillips (1999), which is also suitable for use over a similar range of nonstationary values 

of d.

As suggested in Phillips (1999), a further possibility is to use the exact form of the 

discrete Fourier transform (8 ) in constructing the local W hittle likelihood. Such a likelihood 

does not rely on approximations of the discrete Fourier transform and may therefore be 

expected to provide good semiparametric estimates for all values of d. However, this method 

involves much more demanding computations than the modified W hittle estimator discussed 

here and an asymptotic theory is yet to be worked out.
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7 Appendix A: Technical Lemmas

This section provides technical lemmas that are useful in the evaluation of the modified 

discrete Fourier transform on frequencies Aa =  —* 0. The lemmas are divided into

two groups. The first gives approximate representations of the sinusoidal polynomials 

D n (elX‘ ; d) and f \ p in (8 ). The other gives asymptotic approximations to the term U\n ( / )  

and X n in (8 ).

7.1 C om ponent A pproxim ations (determ in istic  part)

7.2 Lem m a

For f  >  — 1 and Xs =  ^  —* 0i

D n (eiX- - f )  =  +  (15)

uniformly in s.

7.3 P ro o f

D n ( e ,A*; / )  =
k=0

=  ^  ^  (~ f ) k cik\.
k=0 fc=n+1

it!

=  ( - / ,  1; 1; e'A*) -  £  k - ’ ~l eikx-

/  00
+ o  £  a t ' - 2

\fc=n+l )■

k=n+ 1

where the third line follows from the fact that (Erd6 lyi, 1953, p.47)

=  r ( ~ /  + k) =  1 k - f -1  ( i  + 0  (fc- 1 ))
fc! r ( - / ) r ( i t  + i) r  (—/)   ̂ ^

(16)

(17)

Because /  >  — 1 and s ^  0, the first term in (16) converges and equals to ( l  — etX‘Y  

(ErdSlyi, 1953, p.57). For the second term in (16), by Theorem 2.2 of Zygmund (1959) we 

have

OO n+N
y  " f . - / - l e2ni3k/n <  (n  +  1) * 1 max e2 irisk/n

k=n+1 fc=n+l
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and the ordinary summation formula gives

n+N iV
g2 iriskfn = y  fi2Trisk/n = o

k=n+l fc=l (=)-

uniformly in N. The term O  (XjtLn+i k~f~2) is O  because YlkLn+1  k ~ * ~ 2 —

O  and s /n  —> 0 . ■

7.4  Lem m a

For A |  0, uniformly in A,

A - / ( l - e iA) /  =  e"T ^ +  0 ( A ) ,  (18)

A ^ l - e " * ) 7 =  +  O  (A) .

7.5 Corollary

For f  >  —I and X3 =  —+ 0,

A~f D n ( e iA'; / )  =  \ J f  ( l  -  eiA' ) 7 +  A~f O ( n ~ f  s _1)

=  e - ^ i +  0 ( A s) + 0 ( s - 1- / ) ,  (19)

uniformly in s.

7.6 P roof

Note that | l  -  e**Aj =  |2 sin ( | ) |  . An elementary geometric argument (see the attached 

figure) implies that, for 0  <  A <  7r,

arg
A — 7r

and arg ( l  -  e~tA)  =
7T — A

Hence we can write ( l  — elA)^ in polar form as

( l - e *A) 7 =  | | 2 sin

sin |

2 s in  ( f )  f  H  ( ¥  -  ¥ ) + i  sin

=  12  sin

2  ) \  '
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cos

sin

Taylor expansion yields
j

2sin(^) = 2cos(°) ■ i  ~ | cosOO' ( i )  = a+c,(a3) ’

( ¥ “ ¥ )  =  ^ ( - ^ ) - s m ( A )  ( ^ ) = c 0s ( - ^ ) + O ( A ) ,

( ¥ - ¥ ) “  s i n ( - ^ ) + c „ ( X ) . ( f ) = s i n ( - ^ ) + 0 W , 

and all the reminder terms are uniform in A. Therefore, uniformly in A,

\ ~ f ( l - e tXY  =  A- / (A +  O (A3))^  |cos +  O ( A ) + i s i n  +  iO(A)

=  ( l  +  0 ( A 2) ) / [ e - ^ * + 0 ( A ) ]

=  (1 +  0  (A2))  [e -S ^  +  CKA)]

= e~*fi +  0 (  A).

The approximation of ( l  — e~iXY  follows the same line o f argument. ■

7.7 Lem m a

Uniformly in p  and s,

/ 7  _  [  O  (p f)  , for /  >  0 , . ,
(а) fx .P -  |  o  ( „ - / ) ,  f o r / € ( - 1 , 0 ) ,  ( ;

(б) A .P  =  f o r /  > - » •  <2 1 >

7.8 P roo f

The approximation (17) yields

A -  =  F r b r  L
 ̂ 7  '  fc=p+ l

1 ^ 2  k - f ~ le2niskfn +  O ( ^  A:"'-2 )
fc= p+ l \ lc = p + l  )rC-

Using the results derived in the proof of Lemma 7.2, we obtain
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giving part (a). Part (b) follows from

n P+/V
<  ( p  +  1 ) ^  1 m a x
— ’ AT

y y  e 2 irisk /n

fc=p+1 k= p+ 1

P+N
^  e 2ir isk /n  

fc=p+1

± k - ' - *
h=p+ 1

since s <  n. ■

7.9 C om ponent A pproxim ations (stochastic  part)

The following lemmas give asymptotic approximations to the term U \n ( / )  and X n in (8 ) 

when Aa =  —» 0. Note that the stochastic order of magnitude of U \n ( / )  changes

depending on the value of / .

7.10 Lem m a

For Xs =  ^  -  0,

U x .n  ( / )  =  c  (1 )  £A .n  ( / )  +  r . , n ( / ) ,

where
n —1

n ( / )  =  5 ^ fxpe~'pxen - p ,
p=0

and
P \r  .2 _  /  O ( i ) , f o r / > 0 ,

|r ,'n ( /) l  “  \  O (n -V )  =  O (nM"2) , for /  €  ( - 1, 0 ) ,

uniformly in s.

7.11 P roof

Applying the BN decomposition

00

ut =  C { L ) e t =  C { l ) e t -  (1 -  L)?t, e* =
j=o

to U \mn ( / )  yields

OO
C3, (22)

s = j + l

-  ° © '

= 0 (p' / ' 1) = ° ( ^ ) '
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n —1

Ux.n{ f )  =  ^ /A .p e - ^ - U n - p
p=0
n —1

=  5 2 f A . Pe - ipA- l C ( l ) e n- p - ( l - L ) e n-.Pl
p=0

n —1

=  C ( l ) £ Xin ( / )  -  ] T  7x.Pe~ipX- (1 - L )  e„_p.
p=0

Note that the assumption \cj\ <  oo implies that <  00 hence £ [e t ]2 <  oo.

Rewrite the second term as follows: 

Y t fx.Pe~ipX- ( l - L ) e n- p
p=0

n —1 n —1

— fx.QZn +  5 3  h . P e  'PX*£n - P ~  f \ . { p ~ \ ) e  ^  ^ X‘ £ n - P f x . ( n - l )£
- i ( n -  1 )A ,~

P = 1 p = l

=  £  [f^.Pe ~ipX’ -  / A . ( p - i ) e - i (p ~ 1)A*] £ n - p  +  fx.oen -  fx .(n - i) e -« n- 1)X‘eo.
p = i

In view of the results in the proof of Lemma 7.7,

j  fx .0  =  O ( l ) ,  /*.(„_!) = 0 ( n - / - 1) ,  f o r / > 0 ,
\  A ,o  =  O ( n ^ )  , /A .(n -i)  =  O ( n - / - 1) , for /  G ( - 1 , 0 ) .

Hence, using the fact that E  [et]2 <  oo, we have

E  fx ,osn 2 =  o (1) ,  E  l / ^ n - D e - ^ - ^ - e o l 2 =  O  (n"2/ - 2) , for /  >  0,

E  f \ , 0£n 2 =  0  (n~2f )  , JE |/A .(„ - i )e - <(,l- 1)A'?o |2 =  0 ( n - 2/ - 2) ,  f o r / € ( - 1 , 0 ) .

From Lemma 7.7,

Tx.r e ~ ipX- -  /A.<p-.)e-i(p- 1)A- =  Ix .p  [e~'pA' -  [ f Kp  -  fx .( p - » ]

(-/) ,=  fx .Pe ~ipX“ ( l  -  eiA*) -  e~ i(p- 1)A* — y ^ e 'pA*

It follows that

E  -  A . (p- , ) e - i<p- I)A-]
P = 1  

p = l  7=1

_  f 0 ( 1) ,  for /  >  0 ,
\  O  ( n - V )  , for /  €  ( - 1 , 0 ) ,
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and the result follows from Lo6ve’s Cr inequality (Davidson, 1994, p. 140). ■

7.12 Lem m a

For f  G (0, | )  and any number L such that L —* oo and £  —>► 0, the follom ng hold 

uniformly in s:

(a) E \ e Xtn{ f ) \ 2 =  0 ( n l - V )  =  O (n 2*"1)  ,

(b) £ | ? A . n ( / ) | 2 =  +  =  O  ( l 24 - 1 +  | L M - 2 )  ,

(c) E  |£a.» ( / ) l  =  +

7.13 P ro o f

For part (a), it follows from Lemma 7.7 that

E  |?*.„ ( / ) | 2 =  E  I A.Pe ' ”’A‘ P"2 / ) =  O ( n ‘- 2 /)  ■p=0 \p=l /
For part (b), we write £ \ , n ( f ) as the sum of two components, the first involving L +  1 

components. Specifically,

L n —1
7. ^

-pE  Tx.Pe - irk-en. ,p=0 p=L+IL 2 n—1
<  2 E ^  A.Pe lpX‘£n-p -F2£ /Ajpe lpX‘£n-pP=0 p=L+1 (23)

where the second line follows from Lo6ve’s Cr inequality. By Lemma 7.7, each of the terms 

in (23) is bounded by 

\  2

p=0

n —1

kP =l

E  (A.-)’ -  o ( £  wwk)=°(ip=L+l \p=£+l J  \  p=t-+l /
For part (c), Minkowski’s inequality yields

2\ 1/2£, 2\  V2 / n—1
y *1 />.Pe lpX,£n-p) ^ y " f*,pe tpX“ £n—pp=0 /  V p=L+lE \ e x. n {f) \  <  \ E

=  o ( l W ) + o ( 0 2 l - / ) ,
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giving the required result. ■

7.14 Lemma

(a) For /  €  (—1,0),  the following holds uniformly in s:

E \ix .n  ( / ) I2 =  O  (n 1"2^ - 1)  =  O  (n 2d - 1s -1 )  .

(b) For f  €E (—5 , 0 ) and any number L such that L —► 00 and ^ » 0, the following holds 

uniformly in s:

( / ) I2 =  O ( +  £ r 3' - j  -  O ( ~ - L d~l +  £  £ “ -> )  .

7.15 P roof

For part (a), using Lemma 7.7 we get 

=  O ( n I - 2^s_1)  .

Part (b) is proved by the same argument as used in Lemma 7.12. Specifically, we have

E \ e x,n ( f ) \ 2 < 2 E
L  __ 2 n —1

^ ^ / > , p e  ipX'E n - p +  2 £
p = 0 p—L-f-1

(24)

and
l - f  L

12

p=0

n —1

E ( s . , )

£ ( / - ) ’ ■ '■'( E  E
p = L + l \p = £ ,+ l  J \  p= L + l

giving the required result. ■

7.16 Lemma

_ 0 ( £ V , ) ,

(a) For f  €  [5 , l ) ,  the following holds:

Fl-r r n i2 _  /  O ( lo g n ) ,  for /  =  i ,
^ | £ A . n ( / ) l  -  |  0 (1) ) for /  €  Q ,  l )  .

(b) For f  €  (—1, —1] , the following holds uniformly in s:

2 _ [  O  (n l ~2f s~2) =  O  (n2d - ls -2 ) , for /  €  ( - 1, - 5 )  ,p r  r n .2 _  r 2/* ) =
k > . n ( / ) |  |  O (s- 2n2 log n) , for /  =  - 1.
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7.17 P roof

Using Lemma 7.7, we have, for part (a),

2 I —  p_2/^  _  f O ( l o g n ) ,  f o r /  =  l ,

p = o ‘ \ p = 1

and for part (b),

E  ( / ) P  =  g  12 =  O ( g  ^  I =  O

_  ( 0 {nl ~2 f s~2) ,  for /  =  (—1, —5 ) ,
\  O (s~2n 2 l o g n ) , for /  =  —1 ,

giving the required result. ■

7.18 Lemma

For d €  ( 5 , 2 )an d  1 <  t  <  n, uniformly in t,

(a) X t - X 0 =  C  (1) X f  +  n ,  where X f  =  T ^ t - f c  and

F \ r \2 -  I  for d  €  (£ , l] ,
E \ r t \ 0 ( f2 d - 2)i  for d  6  (1 , 2 ) ,

(b) E ^ f l ^ O i n 2* - 1) ,

(c) E \ X t \2 =  0 ( n M- 1) .

7.19 P roof

When d =  1, see Phillips and Solo (1992) page 976. For d ^  1, applying the BN decompo

sition to ut and substituting into (3) yields

X t — X q =  =
Jt=0 fc=0

fc=0

Rearrange the second term as follows:

2 ^  t !   ̂ L ) £ t - k  2 - *  k \  k \  l ~ k ~ l
k= 0 k' fc=0 k=0

(d )p~ , (d)fc~  _  (rf)fc-l -r _  (d) t - l  -X
0! ‘ ^  A:! l~k (k -  1)! t_fc (t  -  1)! 0k= 1 fc=l v ’ v '

(d -  !)fc~ . -  W t - 1 (0 5 }
^  fc! +  _  ( F ^ l j ! 60’ ( 5)
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where the fourth line follows from the fact that

(d)k (<*)*_ i 1 \ T ( d  +  k) T ( d  +  k - l )
k\ (k — i)! “  r  (d) |r ( f c  +  i)  r(fc)

_  T { d  +  k  -  1) . _  . _  .
r  (d) r  (A: +  1) ' ]

r (r f +  f c - i )  ( d - i ) k
r  (d - 1) r  (fc + 1)

The mean square of the first term in (25) is

fc!
(26)

■£-1 2 ■ t- i ' t - i
=  £ Y 2  kd~2 z t-k

J c = l Jk=l j = i

t - i t - i
=  2 J Z Z<< 2 E { e t- k£t- i )

k= 1 i= l
(27)

and the result follows from the fact that E£%_k <  oo and Cauchy-Schwartz inequality.

=  0 ( 1 ) ,  and part (a) follows from Lo^ve’s cv(<*),-!- 2 
( t—1)! 0Trivially EJef =  0 ( 1 )  and E  

inequality.

For part (b) and (c), E  [X f \ 2 is bounded by a2  y^ T 1, k2(d~ 1̂  =  O (t2d_1) =  O (n 2̂ -1 ) , 

giving the required result. ■

8 Appendix B: Proofs

8.1 P ro o f o f  L em m a 2.2 and L em m a 2.3

See Theorem 2.2 and 2.7 of Phillips (1999). H

8.2  P ro o f o f  Lem m a 2.5

Multiplying both sides of (8 ) by \ d ( l  — e,Aj) 1 yields

A j  e»A- (X n -  X q) _  A dD n (e iX*; / )
1 — e,A«1 -  e,A- y/2 -nn 

Using Lemma 7.4 and Corollary 7.5, we have 

A dD n (eiX- , f )

A? Ux.n ( f )  
1 -  eiA» y/2 izn

(28)

1 — e,A*

1 — eiA»

Aj f p n (ciA«; / )  _  e~f +  O (A.) + O ( s - l-Q  
AJ1 (1 -  eiA-) e ~ t l + 0 ( A 5)

e ? *  +  0 ( A , ) + C > ( s _ W )  ,

O  ( a ; - ‘) .

(29)

(30)
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Since E e4 <  oo and YlJL oi \ci\ <  00  > wu (Aa) can be approximated as follows (Hannan, 

1970, p.248):

Wu (Aa) =  C  ( e lX,'j (A») +  r n (As) .

where

E \ w e (A3) |2 =  ^ ,  E  |rn (A3)|2 =  0  (n -2 ) ,

uniformly in s. C  (e‘A) is differentiable with a bounded derivative because 3  \cj \  <  0 0 •

Therefore, Taylor expansion gives C  (e,A*) =  C  (1) 4- 0  (As) uniformly in s. It follows that

Wu (A j) =  C  (1) w £ (Aa) +  0  (As ) we (Aa) 4- rn (Aa) =  C  (1 ) we (Aa) 4- r* (Aa) , (31)

where E  |r* (As ) | 2 =  0  (A2) . Combining (29) and (31), we obtain the approximation of the 

first term in (28), viz.

Xd, D „ ( e a - , f )
1 _  e iAi tfu (A.)

=  e f  diC  (1) we (A ,) +  e ^ r i  (A .) +  [ o  (A .) 4- 0  ( s ~ W ) ]  [C  (1) w £ (A .) 4- r i  (A ,)]

=  e f  ( 1) we (Aa) 4- r“ (As) 4- r2 (As ) ,

where E  |r“ (As ) |2 =  O  (A2) and E  |r2 (As ) |2 =  O (s~2~2f) =  O  (sM~4) .

Now we derive the bound of the second term in (28). It follows from Lemma 7.10 and 

(30) that
A i  U x .n U )  A* C ( l ) e Xtn ( f )  , a  * r5,n ( / )

s/ 21 _  e »A, y /2 ir n  1 — e ,A* s/ 2 ‘k ti

where

A? ra,n ( / ) _  /  0  (Aj* 2n -1 ) =  0  (s2̂  2n x 2d) , for d €  (5 , l )  , 
\  0  (A2d- 2n ^ - 3) =  0  (s2d_2n _1) , for d €  ( l ,  §) ,1 -  eiX- s /2 irn 

uniformly in s, giving part (a).

For part (b), using Lemma 7.12 (a) and 7.14 (a), we get

A, 0  ( 1) e*.n ( / )  |2 f  O (A ^ -2n2d- 2) =  O (s2d- 2) , for d €  ( i  l )  , 
1 -  etA* s /2 im  " ( O  (A ̂ - 2n2d~2s " 1) =  0  (s2d"3) , for d €  ( l ,  §) .

It follows from Minkowski’s inequality that

r2 , ,  ,  , <  & . » ( / )  f  _  r 0 (»M- 2) ,  f o r d s  ( 4 , 1) ,
r”(A') + 1-e<A. 2̂™ for de (1,4),
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uniformly in s, giving the required result.

For part (c), a straightforward application of Lemma 2.3 (b) yields

A, eiA* ( X n  ~  X q)
Aswx (Aa) +

1 — e,A* y/2 nn
(32)

-wu (As)
1 — e,Aj

=  ( e ^1 +  O  (Aa))  \C  (1) w£ (As) +  r \  (As)] 

=  iC  (1) we (Aa) +  O  (As) [C  (1) we (As) +  r-1 (As)] +  e ^ r ln (A.) 

=  iC  (1) wc (A,) -+- r£n.

For part (d), using Lemmas 7.10 and 7.16, we have

2
A? rs,B ( / )  

1 -  e,A* v/2x n

1 -  e,A* x/27rn 

It follows that
■{

for d € (0 , ,
O (A ^  2n 1 logn ) =  O  (s2d 2n* M logn ) , for d  =  5 .

r2 /■ \ \ . Aa U \,n  ( / )  
r n (As) +  L _  eixm v/ 2̂ =  O  ( s 2d 2n 1 2d logn^ ,

giving the required result.

For part (e), a similar calculation yields

2

=  O  (A“ - Jn“ - 3)  =  O  ( s 2d_2n _ l )  ,£ As rs,n (/)
1 — e,A* v/27rn

■ {
Thus

AjC (1) (/)
J1 -  eiA* s /2 -nn

O  (A2d- 2nM"2s - 2) =  O (sM- 4) , for d € ( f , 2 ) ,
O  (A2d-2s~ 2n lo g n ) =  O (s2d~4 n3~2d logn) =  O (s2d_4 logn ) , for d =  §.

and the stated result follows.
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8.3  P roo f o f  T heorem  3.1

We follow the general approach developed by Robinson (1995b) for the stationary case. 

Define G(d) =  G0^  A*(d_do) and S  (d) =  R  (d ) -  R  (do) • Rewrite 5(d) as follows:

5 (d )  =  R ( d ) - R ( d o )

=  log G  (d) -  log G  (do) -  (2d -  2do) — Y"! loS
j= i

=  log
G(d)

£ £ , .  A f'" * ’’ “ * Go

1 m
- ( 2d -  2do)— ^  log Aj

i= i

, G(d)  G ( d o )  [ I  *
=  i ° e ^ T - i o g - c r  +  i o g ( - E

m _2(d-do)
■2d-2do / .

J=1

- ( M  -  M > ) - E  +  Io« ( 2 ( d - < * , ) + '!  J

2 (d — do) +  1

=  log ~ ~jr — log
G(d)

-(2d -  2do)

G V °1  +  log I 1  y ' f d - 2 d o  /  m2{d -d°) _  
Go 6  \ m 7 2 (d -  do) +  1i= i

1 m
— V  log j  -  (log 771 -  1 )  
77i

7=1
+ ( 2d -  2do) -  log (2 (d -  do) +  1) •

For arbitrary small A  >  0, define © i =  {d : do —  ̂ +  A  <  d <  A 2 } and 

©2 =  { d : A i  < d < d o  — 5 +  A } .  W ithout loss of generality, we assume A <   ̂ hereafter.

Since the function x  — lo g x  achieves a unique relative and absolute minimum on (—l,oo)

at x  = 0, and x — lo g x  >  0.562 if |x| >  6 , d  —*p do if

and

as n  —► 00 , where

sup \ T  (d)| ~^p 0, 
©1

Pr ^inf 5 (d )  <  0^ -»  0,

T ( d )  =  log
G(do) , G ( d )  
~~Gq ~G(d) ~ (=s ■2d-2do

m 2 (d-do)

2 (d — do) +  1
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+ ( 2d -  2 do)
1 m— Y *  log j  -  (logm  -  1) 

m  r - f
j = i

From Lemma 1 and Lemma 2 of Robinson (1995b), for d €  ©i, we have

2 ( d - d o )  +
m

kWJ -  (logm  -  1) =  o ( ! 2 j p ) ,
j=  1 V 7
i m /  ,• \  Id—Ida /■ i \

-  - o ^ y (33)

Note that

G  (d) -  G {d)
G(d)

A S T - 1  r. (Aj) -  C . A  s r ->
/-r 1 r ' m  . 2(d—do)
G0m 2 -j= l Aj

a  s r -  ( ^ ) ^ ,-/» w  -  c o t  s i ,  ( a ) ^

[2 (<<-<fa) + l| A S jm„  [*?*'. (A ,0  ~  C b ]
/  - \  2(d—do)

[2 (d -  do) +  1] G0— 2 j= i (m )  

A(d)  
5 ( d ) '

(34)

Therefore, by the fact that Pr (|log Y\ >  e) <  Pr (|Y  — 1| >  e/2)  for any nonnegative random 

variable Y  and e  <  1, supe i  |T (d)| —*p 0 if

A { d )
sup
©i 5 ( d )

0 .

From Corollary 2.6 (b) and (c), we have

Af ° I v (Ay) =  \C  (1 ) |2 IE (Ay) +  5 £ n +  J $ B ( d o ) ,

where E R?3,n =  O  (Aj )  and

r o a * - 1) ,  
0 ,

for do 6  ( | ,  1) , 
for do =  1 ,

o f f * *  i ) ,  for do € ( 1, § ) ,
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uniformly in j .  Thus, in view of the fact that Go =  /u  (0) =  2* |G (1)|2 , A  (d) can be written

as

A(d)  =  p t f - d o l  +  l j i f V i )  /„ (A,) — Go]
i= i V 7

2 d -2 d o

=  A l (d) +  A2 ( d ) + A 3 (d),

where

A i i d )  =  g
2 m / \ 
-5(")

2d-2do r2 l

/e(Aj) 27T

,  m  /  - \  2d-2do  |  "* /  ■ \  i a —m o

m w  =  « ? - .  *? .»«>> .
j —l  x 7 J= 1  '  '

and g =  2 (d — do) -+- 1. We proceed to consider the successive terms Ai (d) i =  1 , 3 .  For 

the first term Ai  ( d ) , since Ee 4 <  oo, we have, uniformly in j  and k, (Priestley, 1981, p.405)

2 d -2do

E I ' M  = (35)

V a r { I £ (Xj)) =  0 ( 1 ) ,  (36)

C o v ( I e (A j ) , /C(A*)) =  O (re-1 ) , j f t k .  (37)

/  . \  2d—2do
From (35), (36), and (37) and the fact that ^ ^ J=1 \m.)  =  ^ ( 1 )  for d  6  0 i  (see

(33)), it follows that

2d -2da
U ^ ) - -

Ad—Ado

1 771 /  * \  * 

i Ef-)
j= i

,  T7l s ' \  ‘

-  ^ g (- )
+ 2 2 ' £ ( L Y ~ " 0 ( - )m 1 \ m  J Vm Jj-fk

,  m  /  ■ \  4d—4 d o \  /  ,  m  /  ■ \  2 d -2 d o  j n  /  > \  2d—2do

££(£) )+° ( ^ )  S(™) B' ‘

K a r ^ A ,-)]

2d—2do /  , \  2d-2do
Cov [Ie (Aj )  , 4  (Afc)]

=  O

_  f O (log m / m )  for 4 d - 4 d o  > - 1  1 - i \
“  \  O  (m ~ 2~4d+4do) for - 2  +  4A < 4 d - 4 d o  < - 1  J '
=  O  (m _4A +  m -1  logm  +  n -1 ) =  O (m -4A +  n -1 ) .

Therefore, for all r f € 0 i  we have

A \ (d) =  Op (m ~ 2A +  n ~ ^  .

(38)

(39)
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Next consider A 2  (d) and ^ 3  (d ) . E  \ A3 (d) | is bounded by

l = o [ - y . ( l T = ° ( - )m  \ m )  n  \ m  J  n  J  ' n '

E  \Az  (d)[ =  0  for do =  1, and for do €  ( 5 , l )  , we get

E \ A 3 (d) \  =
2d-2da

•<io—1

2 d - d o - l

O  (m^0-1) for 2 d  — do >  0
(7n2do-2d_1 logm ) for 2 d  — do <  0-{s

=  O (m .**0  1 +  m  2A log rnj .

For do € ( l ,  §) , we obtain 

E ( 1 m /  „• \  2d—2 do ,  \

^ e (£)

i = 1

O ( jn d° ~ ^  1UI .̂U. — UQ — 5

O {rn2d°~2d~l logm ) for 2d — do — § <  —1 

=  O  ( jn d°~^  +  m ~ 2A

{
for 2d — do — 5 >  —1

logm^

Thus, ^2  (rf) =  (n xm ) and

Op +  m -2A l o g m ) , for do €  (5, l )  ,
A3 (d) =  3 for do =  !>

Op ^mdo-i  +  m ~2A lo g m j , for do €  ( l ,  §) ,

for all d e  ©i-

In sum, A  (d) is bounded uniformly for all d 6  0 i  as follows:

Op (mdo~l ) , for do 6  ( 5 , l)
A (d) =  Op (m ~ 2A log m  +  n~% +  n ~ lm)  4 - < 0, for do =  1,

Op ̂ m**0 - !  J , for do €  ( l ,  §)

Finally, observe that

B  (<0 - P  ( < * - * )  + H G o ^ f : ( i )
j= l  S

2 (d—do)
=  Go +  O (m “ 2A) ,

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

44

uniformly for all d  €  0 i ,  hence Pr (in fe l B  (d) <  Go/2 ) —» 0. 

From (40)-(41) we deduce that, uniformly over d €  0 i ,

A( d )
sup
©1 B{ d )

— Op ( 1) . (42)

Also we have established

G ( d )  i i G ( d ) - G ( d )  L
G {d) * ' G{d) p 

Now we consider ©2 =  {d  : Ai < d <  do — 5  4- A} . Using the same notation and tech

nique as Robinson (1995b), we proceed to prove that,

Pr ^ m fS (d )  < 0 ^ 0 .

Let p  =  exp (m ~ l Y^T l ° S j )  anc* S  (d) =  log | d  (d ) / D  ( d o ) } , where

1 m  /  4 \  2(d—do)
b m  =  - £ ( } )

It follows that

where

1 m
i n f D ( d ) > - ^ a ^ / „ ( A y) ,
0 2  771 ^— *i= i

a.j =  <

,  . \ 2A—X
( , for 1 <  j  <  p ,
;  s - 2 d o - i
( £1  , for p <  j  <  m.

Then,

P r ( i n f S ( d ) < o )  <  Pr ^  - l ) j ^ / „ ( > ; ) < ( )

From Corollary 2.6 (b) and (c), (43) is equal to

Pr (Bi  4- B 2 4- B 3 <  0 ) ,

where

Br

B 2

|C(1)| 2 m

m
3 = 1

- m  * in

3=1 3=1

(43)
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We proceed to consider the successive terms as above. For B\,
rn r , m

+ ^0— E  (flj — 1) - 
j = lJ—A V—*-

As m -*  oo, p ~  m /e  and 5Zi<j<p aj  ~  2Se- v êw ° f  the magnitudes o f the moments 

/c (Aj) discussed above and the fact that (note that A < 1/4)

=  Y ,  aj  +  Y ,  aj  =  O  (m) +  O ( p 2dc+l f  x~ 2d° ~ ldx \ = 0 {m) ,
j= 1 l< j< p  p + l< j< m  \  Jp J
m p m

J 2 a j 2 =  p2- 4A £ j 4A- 2 +  p^ +2 £  j - ^ - 2 =  0 (m 2- 4A +  m ) ,
j =i j= i j=p+1

of

we have

U ( A j ) -m 'j= i

-21

27T

O

j —*

1 171 \  /  1 m 771
^ £ ( 0j - i ) d + o U l > - i ) £
 ̂ i = i  /  \  i = i  fc=i

_4A  _1 \ . ^  /  —1 \
\  J   /  \

=  O  (m ~4A +  m ~ l ) +  O  (n~l ) .

Thus

E \ B 2 \ is bounded by
m j =i

For £ 3 , we have

£ | £ 3| =  -

i t  ^ - < = o ( L p a j - ^ y 0 ^ ) .

This is o ( l )  because 

1 m

' O  ( i  £ " ,  (OJ -  1) ■ for <4, e  ( i ,  1) ,
0 , for do =  1 ,

k °  ( £  £ £ 1  (aj -  1) J * “ * )  . for do €  ( 1, §) -

_ P
,1-2A  P

J=1
m

j2A + d o —2 +  P

i = i

,l+2do ™

m

1 m 
1

j= i

j  -

=  0  (jn ~ 2^  log m  +  m4*0-1  j  ,

E  .t 2- *
i= p + i

-1- 2A PV 14-2/in
E ^ +* , - t  +  a _  E  r  1 - *
j= l j=p+ 1m

O (m  2Alogm +  m d° ~ 2  j  ,

(44)
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and
1 TTi « T71

i  2 , * -  =  O ( m * - )  , i £ j * H  =  O ( m * - ! )  ■
j=  1 J = 1

Choose A <  1 / (2e) < 1 / 4  with no loss of generality, then for sufficiently large m ,

— y* (<*i -  1) > — y '  ai  - 1  ~ 777“  ~ 1 > 6 >  °-m  ' m  jrrt 1 2A e
3=1 1 < 7 <P

Hence,
1 m

B \ +  B 2  +  B$ —>p Go— N (a, — 1) >  Go^ >  0.
3 = 1

It follows that

Pr (i?i -F B 2 +  5 3  <  0) —*• 0 as m  —* 0 0 . (45)

Therefore, d —>p do, giving the stated result. ■

8.4 P roof o f  T heorem  3.2

The proof has the same structure as that of Theorem 3.1 and we therefore provide only the

relevant parts. First, it follows from Corollary 2.6 (e) that

A (d )  =  [ 2 ( i - * )  +  l ] ^ E ( ^ )  [A f 'M A j)  -  Go]j=l  ̂ 7
=  A i  (d ) -F A 2 (d) +  A3 (d) 4- A 4  (d) +  A5 (d) +  Ag (d) ,

where

^1  (d ) =  9
m )j = 1 v 7m

.  m  ,  . >. 2d —2do , m  /  • \  2d - 2do

m «h  =  9 ± e ( £ )  J 5 - .  *?■»<*>■
j = 1 v ' j= i

. m , . \  2d—2do 1 m /  -• \  2d - 2do

=  « £ £ ( £ )  *?.»<*>• **»«>>■
i= i v 7 i= i

1 m /  1 \  2d—2do
=  9- E ( ^ )

j = 1 v

It has already shown that A i (d) —*p 0 and A2 (d) —»p 0. For A, (do) * =  3 ,..., 6 , we obtain

2<

1J
1 m /  i  \  2d—2do

£ |4 , ( < 0 |  =  0 | ^ X j ( i )  / ‘° - 2 (logn)S
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=  O  ^(logn)^ m2̂  M d°"

=  O ((lo g n )3  m 0̂ -2  +  (logn ) 5 m _2A Iogm^ ,

I 1 _m_ /  /j \  2<f—2<io \  /  »fi
i s | A i ( d ) |  =  O  5 3  ( ^ m j  2 J  =  Q  ^ n ~ ^ m 2d° ~ 2d~ 1 5 ^ j 2 d - d g - 1

=  O  (n ~ * m de~l 4- n ~ 2 m ~ 2A logm ^ ,

E \A 5 (d)\ =  j24o-4 to g n ^ =  o  ^(logn) m 2d°~'2d~l 5 3  J2

=  0  (( lo g  n) m 2d° ~ 4  +  (log n) m -2A log m j  ,

E | ^  (<01 =  o  ^  E  =  °  E /

=  O  ( j i~ l m 2d° ~ 2 +  ra- 1m -2A logm ^ .

It follows that 5^f=1 Ai (d ) -*p 0 if *■£■ 4- —► 0 as n —► oo.

Similarly, we have

■2d—2

B \ =
|C(1)| 2 m

m  *—* m  . ,j= i j= i

1 m
^ 2  =  — 53 ~  ^ ,n  ~*P

;=i
- 771 . 771

B z =  - £ w - l ) ^ , w ,  B< =  -  ^  ( O i - l )  « ; , „ ( * ) ,
i=l j=i

- 771 - 771
B z =  - E ( “J-l)«5,n(<io). Be =  - ^ > ,  - 1 )  «?,„(*)•

j =i i=i

B3 , ..., Be converge to zero in probability, because

E \ B 3 \ =  O  ^ ^ ( a y - l ) j * - 2 ( l o g n ) ^

=  O  ((lo g  n) 3 m ~2A log m 4- (log n) 3 m d°~2 ĵ ,

£7 |^ 4 j =  O 5 3  (°j ~  1) =  Q  (n ~ ^ m ~ 2Alogm  4- n ~ *m d°~ 1') ,

E |B 5| =  O 5 3 (aj -  l ) ; 2^ -4  l o g =  O (( lo g n )m ~ 2Alogm  4 - (lo g n )m 2do_4  ̂ ,
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£71^6| =  O  (aj — 1) j 2**0 2n =  O (n  l m  log m  +  n l m 2d° 2  ̂ .

Hence £ ? =1 B, ->p G0 £ £ ”Li (ay -  1) >  0 if £  +  -  0 as n  -  oc and d -*p d0

follows. ■

8.5 P roof o f  T heorem  3.3

As above, we deal only with the relevant parts. It follows from Corollary 2.6 (d) that

A  (d) =  A i  (d) +  A 2 (d) +  A3 (d) +  A , (d ) ,

where Ai (d) —»p 0 , A2 (d) —*p 0 , and

1 m /  i  \  2d~2do 1 /  7 \  2d~2do

y=i x '  j= i

For A3 (d) and A4 (d) , we obtain

/  ,  /  j  \  2d~2do  j
E \ A 3 (d)\ =  0 l - 5 3 ^ J  j d o - i n k ~ d°  (logn) 2

=  O  [ 712" *  (log71)5 Tn2*  —2d — 1 ^  j 2d - d a - l

{

3= 1

O fn ^ - *  (log n) 2 m * -1  ̂ , for 2d — do >  0 ,

O (n ^ - *  (logn ) 2 m 2d°~2d~l log771̂  , for 2d — do <  0 ,

( 1 m /  i \  2d~2d°
m E ( m )  J2* - 2" 1- 2*  logn

m
2 d -2=  O ^ n 1"2*  (log71) m 2d° - 2d - 1

_  f O (n 1-2*  (logn) m 2d°~2) , for d >  1/2,
— ( O (n 1-2*  (logn) m 2d°~2d~l logrn) , for d <  1/ 2 .

Note that, for do <  5 we have

n^- *  (logn )2 m 2d°~2d~l logrn =  n* - 2 (logn )~2  ^n1~2do (logn) m 2* -2 **-1  logrn^

=  O ( n l~2d° (logn) m 2do~2d~l logm^ .

Hence, £  IA3 (d)| —► 0 and E  \A \ (d)| —* 0 if (note that d > Ai)
n i-2 d o  i0g  n n1~2d° log n  log m

ma-M , 0 “•“* m i - 2*,+2*;-------- , 0 -
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Since Ax <  do <  3 , this is satisfied if

n i-2A i jQg n iQg  m ^ 
m

For the parameter space © 2 , we change the definition of aj as follows:

'  /  - \  2(d—do)
( i )  , for 1 <  j  <  p,
)  . \  —2do —1

, for p  <  j  <  m.

It still holds that
1 m

inf D ( d ) > - J 2 a j j 2d°Iv (Xj ) ,

a, =

e ,  m . =l

and hence

Pr ( W S «  < 0) < Pr £  (flj -  1) < 0
j = 1

Since d >  Ax >  0 and do <  3 , we have 2d — 2do >  —1- Thns

V  a =  D2(do_d) V  ________ - ______ ~ -— --------- - >  —
2 ^ “' p 2 -  J 2 ( d - d o )  +  l  e 2 (d -d o )  + 1 "  2A e ’

l < J < p  1 < 7 < P

2 _  4 (do—d) y *  -4 (d-do) =  /  °  (m ) for 4 ( d - d o )  >  - 1
2-r ] P 2 ^  3 1 O (m 4 d̂o ^ lo g m )  for 4 (d — do) <  —1

1 <j<P  1 <J<p ^ v 7

=  O (m 2  (m ~ l +  m 4 (do—d) - 2  i0g )  =  o (m 2) ,

and it follows that ai  =  0  (m ) S y lx  aj = °  (m2) - Therefore, using the same

argument as above, we have By —*p Gq-^ Yi'jLi (ai  — *) > ^ 2  ~*p 0, and

E  |# 3  (d) | =  O  ^ ^ ( a j ' - l j j ^ n a - ^ a o g n ) ^

( 1 P_ /  * \  2(d—do) J
m ? j ( p )  j d° - ln * - d0 ( logn)*

+ 0 f + i  £  ( i ) ' M' ' V - ‘n i-*> .(logn)4

+ 0  ( — V "  j d°~l n2~d° ( lo g n ) 2 J
v m f e  /

=  O (  n i - *  (logn)5 m2(do-d)-l 0-1
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+ 0  00 (logn )2  m 2*  ^  j  *  2J

+ 0  | n *“*  (logn)* —  V i * " 1
V >

=  O (n^~d° (logn ) 2 ^m* -1  +  m 2d°~2d~ l l o g ^

=  O ( n l ~2d° logn  ^m* -1  +  m 2d° ~ 2 d ~ 1 log m JJ =  o ( l ) ,

E \ B 4 (d)\ =  O  [ — Y ( a j -  1) f* > -* n l - 2do log n |
\ ™ u  )

(1 p /  1 \  2(<i-do)^E(^) ^ 2 d o - 2 n l - 2 d o  l 0 g „

+0 i p g n j

= O ^ n 1-2do logn  ^m 2*>_2<'_1 Y ' j 2̂ 2 + m2*  ^  j~ 3 +  jjj j

=  O  ^n1-2do log n  ^m2* -2  +  m2* -2<i_1 log m  -+- m -1  ̂̂

=  O ^n1-2d° logn  ^m-1  +  m 2dc~2d~ l l o g ^  == o (1) ,

because "1-2Al ^gtnissn ^  0. Therefore, E ?=1 B t ->P G0£  E ^ i  («i -  1) >  0 and d ^ p do 

follows. ■

8.6 P ro o f o f  T heorem  3.4

Since d  —*p do and G(d) is a continuous function of d, we may analyse G  (do) . We have

G  (do) -  G(do) 7R T ? = i  (Aj) -  Go _  A (do) _
G(do) Go B (do) p

So

G (do) —*p Go>

which gives the required result. ■
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8.7  P ro o f o f  T heorem  4.1

We work from the first order conditions for d, viz.

o =  # ( d )  =  a ( d o )  +  # ' { < r ) ( d - d o ) , (46)

where |d* — do\ <  d —do . As in the proof of Theorem 2 of Robinson (1995b) we get the 

following expression for Ft?' (d)

4 \Fz (d) Fo (d) — A  (d)2]

i e w -  K W  ’

where

h id) = - jr (log jf afiv (\j).
TTl *3 = 1

From (40) and (41), we have

sup
0 !

A (d)
B(d)

=  op (( lo g m ) 6)  ,

so, by the argument on pages 1642-43 of Robinson (1995b), Ft?' (d*) =  Ft?' (do) + o p (1 ). Now, 

from Corollary 2.6 (b), we find

1 m
Fk (do) =  -  V  (log j)*  X2d° I v (Aj) =  Ci  +  C2 +  C3,m • * j

where

C i =
\C(1)\

3=1

2 m

m ^ ( ] o g  j ) k Ie ( Ai) ,
3= 1

. m  « rfi

c * =  i% „, c 3 =  - j ; ( i o g j ) ‘ 4 „(<io).
j = i j = i

We proceed to consider the successive terms as above for fc =  0 ,1,2 . For C \,

C i = | g ( l ) l
m

2 m

i= i

O'2
/e (Aj) “  2 w

1 m
+  G o - V ( l o g j ) ‘ 

m  '
i= i

A similar argument to that above and the fact that

 ̂ TTl  ̂ TO
— J 2 ioSJ ~  logm , — V )  (l°g J )2 ~  (logm )2 ,m .—f m —fi= i i= i
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yield

m
j= i

(logm )
m

giving Ci =  i  £ ”1 L (log j )  (Go 4- op (1) ) .  

For C2 , FIC 2I is bounded by

1 m /  * m \
^ E ( l o g J )‘ i  =  0  ^ - E d o g ^ S j  =  „ ( ( lo g m )‘ )  .

E  \Cz\ =  0 for do =  1) and for do ^  1, we obtain

’ O  U  E ," .i ( lo g j) ‘ j - * - ‘)  =  o  (* * * = £  £ £ ,  j -* -* )  , for <4, €  ( i ,  1) ,

' . O  (A  £ ” 1 (log j ) ‘  J * - J )  =  O ( I t o l t  * * - § )  , for do €  (X, I )  .
E |C 3| H  

Hence

(do) = Co i m
^ E o o g j ) ‘m f

j= i

(1 +  op ( 1) ] .

Then

#'(do) =
4Cg [ i  £ 7=1 (logy)2 -  ( i  £ 7 =1 ( lo g y ))2

e g
[1 4- op (1)]

^4 ^ 4- (logm )2 — 2m logm  4- 2m 4- O  ( 1 ) |

~ 4 [ m 5 { ( m  +  l )  l̂ ogm ) “ m +  C ( i ) }  |  [ 1 4 - op

=  4 4- Op (1) .

Next we consider the first term on the right side of (46). We have

Gi (do) 2

(47)

F t  (do) =  2- - ^ E lo8 Ai'C  (do) m  j = l

where 1 m 1 m
Cl (do) = -  VOogA^A^/^Aj), C(do) = - Z A2d0/̂ Ai)- m J m t-ti= i  j= i
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Then

m?R? (do) =  m 2
G i (do) 2

2 -= — - - ^ J o g A ;a (do)

v/m G(rfo)
2 S Jm, i ( l ° e A J ) A f ' J „ ( A J ) -  ( ^ £ f , 1 l o g A , ) E Jm, 1 A f ’/ „ ( A J ) 

V r n  G ( d o )

2  E,"L, ( log A> -  A 1 los Aj )  i f 01’  (*j>
y/™ G  (do)

S Jm= l ^ [A |* '/„ (A i ) - G o ]

O ( d o )

2
v/m

where j 7*4 j 7*4
i/j =  log Aj -  — S "  loS Aj =  lo g j -  — ^ 2 logJ’ 

m  j = i  7=1
and j/j =  0. For the denominator, from Theorem 3.4 we have

G (do) —*p Go-

By Corollary 2.6 (a) and (c), the numerator can be decomposed as follows:

(48)

_2 
y/m i> *  [* !* '.«* )-< * ]-{££  2 ,

7=1

_  J D \ +  D 2 +  D$ -+- Z?4 +  D$ +  Dq, for do €  (^, §) \  { 1} ,
for do =  1 ,

where

D i

D 2

Dz

2 \C  (1)| 2 TO

y/rn

2 \C  (1)|

■2>

i = i
2 TO

y/rn

2 | G ( 1 ) | 2
y / m

I2 27rn

TO

x Y s Ui
3=1

-dni / \  \ ^ i °  e\ j n ( f o )  ^ i °  £ \ j n ( f o )  -Z-dni /■ \ \»e 2°° w e (Aj)  ---- ---------- J .-----  h -— -̂TT----V —  e 2 We (Aj)
1 — e-,AJ yph/n  1 — e,AJ >/Sm

-D 4  —  — ^  U 3 ^ j , n y  ~  ( ^ ° )  > —  X *  U 3 ^ j , n  ( ^ o )  •

V 7=1 7=1 7=1

For D \, { s t } satisfies the assumptions

E  (et|Ft_ i)  =  0, E  (e^|Ft_ i)  =  a 2, E  (ef |Ft_ i)  =  p3, a.s., E  (ej)  -  p4,
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for t  =  1 , 2 , thus we can apply the result in Robinson (1995b) pp.1644-1647 to conclude

D l =  : § = ! > ;  - m * ( o,4 g §) .  (49)
v  j = 1 L

From Lemma 7.12 (b), for do €  ( j ,  l ) , E  jZI>21 is bounded by

4 = E  w  Af°-a£ i?y (/°)|!!■Jm 4-* 3 27m
j = i

m
2 n

_  , logm

= o (m2* - ^ 1- 2* ! 3* - 1 +  n2- 2̂ ^ - 2) )

—2
When do >  this is o ( l )  by choosing L =  When do <  f ,  choose L =  n (Io g m )2‘<o- 1 ,

then we have
2do—l/tn r \ M°~L

(logm ) m~^ (  J =  m 2d°~^ (logm ) -1  —* 0 ,

,  /  m  T \  2<i0 —2  , 4 —4<in ,
( lo g m ) m'2 ~2d° (  J =  m - 2 (logm )2do- 1 —♦ 0 .

Therefore, D 2  =  op (1) for do €  ( 5 , l ) . For do 6  ( l ,  §) , from Lemma 7.14 (a), E \D 2 \ is 

bounded by

g  w  Afo - £ % M 2 .  o  ( i ^ E ^ - 3)  = °  0 - ™  K " ' 5) )  - « w  ■

and for do €  [ f , §) , from Lemma 7.14 (b), we have

1 y '  1 .̂1 g |g A jn (/o )l
^  j  | l  _  e *Aj | 2  27TT1

=  O ( lo g m  „ ,* - - *  +  ( £ )  m - 4 ^

.  o L  ( ^ ) * 4 * - f +  ( ^ ) ^ - 3 m ! - ^ ) )  = o ( i ) ,
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by letting L  =  £  (logm )2<1o- 3 , giving D 2 =  op (1) 

For D 3, in view of the fact that

n—1
W.

V2ttn ^  v  27rn nf ^ 0 V27rn ^

we obtain the decomposition

Af  s Xjn(f0)* y *  „ . — i  ' - ^ j " 'Wc (a,)*
>/Tn "  1 — elAJ V 2?rn

■  ^ £ - < 1 ^  ( £ * * - " - . )  ( § e ^ £ n - q

It follows that

2 A f  £AjW(/q)
v/m ^  1 — e,A> v/27rn

w £ (Ay)*

ir2 m n2 '

m  \do /  n —1

5 1  ^  1 _  giA, l5Z -^ > P e ipXj£”-;
j = l  \ p = 0

Â °

' n—1

fn— 1

P

n—1

E e<,Ai£" -
1 <7 = 0

U =i

Because {ej} are independent,

( E / - ^ ’rt*cn- r )  I E
Jfc=l \ r =0 /  \ s =0

, - is X k £n—a

E ( e pEqErSa) =

Therefore, (50) is bounded by
{p 4. if p =  9 =  r =  s, 

a 4, if p  =  q ^ r  =  s, 
0 , otherwise.

=  s, p =  s 7̂  q =  r, p =  r ^  q =  s,

M4
m m r n —1

mn T E N  M E  M
J = 1  k = l  \ p = 0

( e M  E K  i t f - 1 E  |7 - a „mn' i= i \ p = °

4 m m .

* = 1

(n—1

, <7=0

+ mn‘
j = 1 fc=i

(51) is bounded by, for do €  ( f  > *) >

(log m )

TTl

2 m m  /  « \  <*0 — 1 /  I- \  «fe —1 1 n—1
EE(i (!) ^X>
j = i  fc=i x '  '  '  p = i

ip = 0

<1q —1 do-1  . n—1

En -
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o  (<*

0  (log m )2^

^  ( ( m \ U c -1  (logm )2^
° ( ( n )  - ^ a r j - » W '

and for do 6  ( l ,  §)

(logm )
m

2 to  m  /  - \  do —I /  i. \  <io —1 i 2 }££(! (!)
J=l fc=l v 7 x 7 p=x ^ 7

O  (  ^ ^ J 2 f ^ j do- 2k do- 1n - 2dO n 1- ^  

\  m j =i fc=i

‘)
_  0  ^ m2̂ 0 2 (log m ) 2 ̂

For do €  (5 , 1) ,  (52) is bounded by

l o g m A / i ^  1 1 / ' s p  I r
W g U >  n ( g l ^

logm

p = 0

( i n g N +a n ? i ^x 7 p=0 x 7 p=L+ 1

m Lemma 7.7, the first term in the bracket is

°(("f ~^g^)
the second term is

°  ((!)* " ’T g ^ )  - ° ( ( i 9 * " V * )  =° ( ^ W 1
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It follows that

lo g m
y/rn

m /  ,• \  da—l i / n~ l .

J= 1  \p = 0

=  o f l 2£ S m * ( ' £ ' ) ' fc +  !2£ 2 ( ' i ) l - '*>y
V v m  \ n /  v m x ^ 7 /

Choose L =  -5 - , and we obtain
y /T T l 1

* ( £ ) * = m*’' 1
_ <*Q 2dp —1—dp <*Q~ *
2772 2 =  772 2 =  772 2

°  ( l o g m )  ’
/  n \  i-«*o _ i  i -<<q -<<o /  1 \

m U i )  =  m  2m 2 = m  2 = ° U i W ’

thus (52) is o (1) .  For do €  ( l ,  §) , (52) is bounded by

do —l  ,  /  n —1logm
y/rn

m /  -• \  <*0-1  1 / 71-1 . __ 

j= 1  x 7 \ p = 0

Using Lemma 7.7, we have

=  o

logm
y/rn 4—

3=

log m

S (9 ‘1 ( S m )
m / - \ (in — 1 . 71—1

W i |  i y —
£ {  V " / n  “ J p ,0+1J

s e r = 7

\/m  “

logm
y / m

logm
=  O |  -J==- 2 I =  O (m *0  2 log rn j ,

, ^  ft'

and, hence, (52) is o ( l ) .

In view of the fact that 23£=o =  n l  { j  =  k ) , (53) is bounded by, for do €  (

2 n» n —1 0 \ 2  m /  . \  2dp —2 n(logm)
mn E » f - ! E A iP

3=1 p= 0

2 =  Q l  (logm )
mn

2 m /  - x 2<1o-2  n

- £ ( £ )  E » -2Aj= i x 7 P= i
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_  q  i (logm )
m n

2 rn , .^2do~2 \

- § 6)
=  O  ^(logm )2 m2^0 2  ̂ ,

and for do G ( l ,  §) ,

m / ,• \  '■ 

5 ©
.  0 1 2 sg C f- .f i)

=  o  ^ lQg m )2 J 2 j 2dn~3

=  O  ^(logm )2 m2d°-3  ̂ .

Therefore, (50) converges to zero, and thus £>3 =  op (1).

£>4 , £>5 and D$ are all op (1) because

e \d 4\ =  o
f  v _

\  ( q f logm'j
• I.. I -dn- 2 1 _  J V v™ /

l o g m ) ,  for do € ( ! , § ) ,

1 \  f  for do 6  ( i ,  l )  ,
* 1 * 1  -  ° i ^ E w ^ - j  =  { 0 p 4 , (

J  o  YyjLi W j \ j d°~ 1n? ^  = 0  (ri2 2 logm ) , for do €  (5 , l)  ,

E ' 6' |  O W j \ j do~ l n ~*') =  °  (n~^ m d° -$  logm ) , fordo G ( l , § ) .

F\irthermore,
  . l \ d o - i

m■fo 2 logm  _  /7712 \
nd°-5 ^ n j

m  2 (•*> 2) log m  —* 0 ,

if m i loKm 0 . 
n

Therefore, we obtain

m ^ ( d o ) = > ^ i V ( 0 , 4 G g ) .  (54)

It follows from (46), (47) and (54) that

( * - * )  -  - w r  -  4 ^ < ° - 4G°> -  *  ( “■ ? )  ■

giving the required result. ■
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8.8 P roof o f  T heorem  4.2
£

The proof follows the same line of argument as Theorem 4.1. The condition m —*• 0

implies that
m 2do 2 (logm ) 12 m l logm  (logm ) 11

n n
At

~ — 2 d a  TTl 2
0 .

Thus, d is consistent and also we have supej =  op ((logm ) , which gives Ft" (d*) —

Ft" (do) +  op (1) .  It follows from Corollary 2.6 (e) that

. m 6
Fk (do) =  -  £  (log j ) k A ( A j )  =  Cj  

where C\  -  £  (log J)k (Go +  °p i 1)) • C 2 =  °p ((log™ )*) > “ d

£7|C73 | =  O  ^ ^ ( l o g j ^ / ^ G o g n ) ^  =  O  ( ( l o g m ) fcm do_2 ( l o g n ) ^  ,

O =  O  ( ( lo g rn)k ,

o ^  Y2 G°g-?)fc j2dc~4 Iog =  °  (G°g m)k m2do~4 log n) >

O ^ ^ ^ ( l o g j ^ j 2* - ^ -1 ^ =  O  ((lo g m )fcm2do-2n _1)  ,

giving Fk (do) =  G 0  0 °g j)*

Before we evaluate S /L i  ui  

A2do/v (Aj) for do €  ( | , 2 )  . First, note that (see (26))

£|C4|

S |C 5|

e \c 6\

[1 + o p (1) ] .

A2do/v(Aj) — Go I , we derive the approximation of

A X , =  X t - X t - i
( t - i ) - i

(d)klu , _  1 V '
U t —k — 1

fc=o 
t - i

E(d)fc v -  ̂ Wfc+i- i  ..
k \ “ * - fc 2 w  (fc +  i  _  ! ) ! “ *-(*+!)fc=0 fc+l=lv

fc=0
£-1

k\

(d)k+1-1

t-1 (d)fc v - '  Wfc-1  .
-  Ut +  2 2  jfc! 2 - ,  (* _  1)! 1

f c + i= i
£-1

(d )k- 1

fc=l
£ - 1

fc=l
£ -1

( d ~ l ) k .

k= 1 fc=0
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and AXo =  0. Let do =  do -  1 G (5 , l )  and / 0 =  1 -  do- Prom Lemma 2.5 (a) we have 

>& w ax  (A,)

idn is^  r-f\ f \  \ A^°C(1) e^A.n (7o) A^°etA* A X n  a j ,  C2 \  t „c n  \
=  e .' C ( 1 ) (A.) -  ^  +  > «  +  (3o) +  r.,„ ( a . ) ,

w-here £  |r“ n |2 =  O (A,) , E  |r*n (do) |2 =  0  ( s 2*0  4)  , and E  |r*n (do)  |2 =  

O  ^s2^°- 2n 1_2^°  ̂ uniformly in s. Lemma 7.18 (c) yields

=  O  (A ^ ° -2n2do“2)  =  O ( s 2* - 2)  = o ( l ) ,

e & C f D w  (A ) -  ^ g ( » ) ^ ( 7 o )  _  A X "
- C ( 1 ) i ' l s )  l - e « -  1 - e ^ - v ^

A*>e,A* A X n
1 — eiX‘ y/2 -nn

hence we obtain

A25o/A x (A a) =

+ ^s,n +  -^a.n (^o) +  ^s,n (^o) >

where £ |f % n| =  0 ( A S) ,  £ | i £ n (3o) \  =  O  ( > - 2)  , and E \ R * tn (3o)| =  O  

uniformly in s.

From Lemma 2.3 (b), we have

- 1
Vx  (Aa ) =  (1  -  etA‘ )  W A X  (As) •

Thus

/„ (  As) =  1 - e
1 - 2

I  A x  (As) ,

and, in view of the fact that E As ^ I a x  (Aj)j = 0 ( 1 )  , it follows that

A2do/„ (A s )  =  A2d° - 2  (1 +  0  (Aa)) I  A x  (As )

C  (1) w c (Aa) L _ eiAj i _ efA#^ _

+-^s,n +  (^0) +  ^a,n (^o) -

where the order of magnitude of the reminder terms is the same as above. 

Finally, we obtain the expression

9
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where

D \ =
2 |C ( 1)|2 ^  r __<r2l

^  2 ^ L  * 27r
v j = i  •- j

?

D 2 =
2 | C ( 1 ) |2 Af" |?Ajn(70) |2

j = i  ’ \ l - e » < \ 2 2 rrn

D A = 2 | C ( 1 ) |2
y/rn

, D 3 ^ $ £ ± » i r ^ °y/rn 2 nn 3 j i  _  ei*j j2

i = i

e f S . < „ ,  ( A j ) X1° *>,'‘J7o)'_ +  ( A ; ) -
v 33 1 -  e",A> v/27rn 1 -  e,A> v/27m 3

Ds =  

D 6 =  

D 7 =

i *»
E - i

2C  (1) A X „
-/m  y/2 -nn

2C(1)
•v/rn 27m “ f J j= i

e idoi A f°e-iA> A ?V aa .
(Aj) — r jj-  -F - jj-e  2 (Aj)

 ̂ 1 — e j 1 — e1̂

A ^ e - iA> ^  x A2d° e iX] _  ^  N.
7— 3 - 2 ^ n  ( / o) +  11_ eiXjl2̂ ,n ( / o)

rt 2 m o J71
~7jy i  5 Z  Vi ^ Lj S L'  =  7 / ^  X X  u i ^ j , n  ( 3 o )  > ^ 9  =  X ]  ( ^ ° )  ‘

V j = l  V 7=1 J=1

It has already shown that D \ —>d N  (0 ,4<7q) and D 2 +  D 4 +  D r +  Ds +  Dg =  ov 

For £>3. from Lemma 7.18 (c) we have

* 1 * 1  -

=  O  (rn2^°~* logm^ ,

which is o (1) if do <  \  <=> do <  \-  

For D 5 , rewrite

as

v / i  i _ e - ‘A>j= i

A v  n 0̂ -1  A^°e-tAj£7  x - JB- E M x
In view of the fact that

£ K ( A i ) - ^ ( A t )I =  ^ £ ' t E [ z pe - ‘* ] [ e , e ^ ] = £ l ± e ^ »
n 1 n1 - 1 p ^

27T

P=1  9=1

1 ( j  =  *)>
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we have

£ |A > 2|2 =  o  ^ (1° ^ n)2 = o  ( ( lo g m)2m2d°-2') = 0 (1),

hence D 52  =  op (1) .  D 51 =  Op (1) by Corollary 7.18 (c), and £>5 =  op ( 1) follows.

For D q, rewrite _

n  | 4 | l
as _

a  f jn  — — TJX \  2 ^ 0  p  “ t A iA X n n“° 2 ™  a e j _
x j i _ e ^ | 2^ n ^  ~  61 x 62'

We have E \ D q i \2 =  0 (  1 ), and from Lemma 7.12 (c), E \D $ 2 \ is bounded by

t  ( i f ( i P  ( j p - 1
=  O  (n S - 5 0  (log7n)m 25° - i £ 3o-2  +711- 50 (logm )2

=  0  ^logm  ' m ^  +  Oogm)2 ^ 4  =  o ( i ) ,

by setting L ~  £>6 =  op ( l )  follows from Cauchy-Schwartz inequality. Therefore,

m ^R' (do) =► zfeN  (0, 4Gq) , giving the required result. ■

8.9  P ro o f o f Theorem  4.4

The condition miMo 2 fog™)12 _» 0  implies that supQl ^ 3} =  op ( ( lo g m )-6 )  , which gives 

R" (dr) =  R!' (do) +  op (1). Recall

m  * > [ d - d o )  =  R„ m

m.2 ~ 2<*° (D\  +  D 2 +  D4 +  D 5 +  Dq +  D 7  +  D% +  Dg)
4Go +  op ( 1)

m | - 2dOj[)3

4Go +  Op (1)

where

(55)

(56)

D 3 =
2

v/m  27rn J | 1 _  e *Aj |2

2 (2tt)**° 2 A X * _  y *  u jido -2  ( i  +  o  (Aj))
27rn24o"i ^
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2 (27T)250- 2 A X 2 ^  2So_2 A X 2 „  f  log

The second term is

»» j2dfi—2 ■ _ n q 2db-l
27rn2d°-1 “ J J n 2̂ -1  ^

~  ^  f  ni2̂ 0 -  ̂ lo g m \  .,.
Op (1) O I — 1 — op (1).

Now evaluate the summation:

m m /  t mr#4 ru  i « »** |  _

E ^ - 2 =  E
i = i  j ' = i  \  i = 1  /

m _ m _ /  . m
=  log j  -  J 2 j 2dc~2 I — £  log J

j= l J=1 \  J=1

For the first term, we have

j 2^0- 2 log j  =  J  x2*°~2 log xdr +  ^ ^m2**0 -2  log rnj +  O  ^log m  J  x**°~2dx^

rm .̂2do—2
-  /  T= - d r +  0 (logm)

J i  2oo ~  1

^ +  O (log m ) ,

j= i
_ fx 2̂ °- 1 logx  

" 2 4 , - 1 J l
m 2do-lj0g m  m 2do-l

2do -  1 (2do -  1)

and, for the second term,

g ^ - 2 ( l | > gJ-)  _  ( f x ^ + I  (m^  + 1) + o ( / ™ ^ - W ) )

x  ( lo g m  — 1 + 0  )  )

■“ a , - l + o ( i ) ' i  ( k , ™ - 1 + 0  ( S K I ) )

+  O (log m ) .

\ 2 d o - l
m 2do — l l0g m  m 2d° - l

2do -  1 2do -  1

Therefore,

m -  m 2do - i f2dn — 21 m 2d° -1
^ -j2do- 2 = -----  j  +  ™-------- +  O  (log m) =  +  o  (log m ) .

j= i 1 ( 2 3 , - 1  )2 2do — 1 ' (2do — 1)

From Akonom and Gourieroux (1987), if f?|ee|p <  oo for p >  m a x / ^ ^ r , 2 j  , we have

^  (D = r f a  £  (1 ■ «  M  ■
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for convergence. When do >  -  1 t <  4 and the condition E \et\*  <  oo suffice. It follows“̂0 o

When do =  | ,  t =  4 and we need an additional moment condition E  \et\p <  oo for p  >  4
“ 0  ” j

for convergence. Wh( 

that, for do €  [ | , 2 ) ,

=  2 f27r^25° - 2
2im 2d°-

m l - 2d° D 3 =  2 (27r)2d° ~ 2 m l ~2do Y '  u j j 2^ - 2
A y ’ Oirrtldo-l 4 -f 3

\2 /■ a v^ 2
=  2 (27T)2d° - 2

3 = 127rn2do_1

-  , 2 (2x )25" -2 £ i i £ ^ B ,  ( l ) 2 23 —  z .
2ir (23o -  l ) 2

For do =  (55) converges to N  (0, | )  and

m £-2do£>3 (1  -  do) ( 2 t ) 25o_2 m 2
~TF>— ;------- 7T\ d  — --- “2-B da-l (X) =  (27r) 2 (1 ) •

4G o +O p (1 ) ( 2 d o - l )  ** 4

For d0 €  ( f , 1) , (55) is op (1) and

( l - a 0) ( 2 jr)23» -2 „  „ l2 (2  -  * )  (2<r)M» - 1 „  , „ 2
d  7775------7^2— ^ d o - l  ^  = ------7^7— ^ 2 ------^*> -2  ( ! )  ’4Go +  Op (1) (2do -  1) (2do — 3)

giving the required result. ■

9 Appendix C: Different Characterizations of Nonstationary 
I  (d ) Processes

Two main approaches to defining a nonstationary I  (d) process have been used in the liter

ature to date. They are by no means exhaustive. The first, which is used in Hurvich and 

Ray (1995) and Velasco (1999a, 1999b), is to define the observed process X t as the partial 

sum of a stationary fractionally integrated process, viz.

t
X t = X o  +  2 2 z jl  t >  1, (57)

j= i
where z j is a stationary / ( d  — 1) process and satisfies

3= 0  J

(58)

where £t is a short-memory stationary process. Combining (57) and (58), we obtain

( 1 - L )  (X t - X 0) =  ( l - L ) 1~d e t,
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leading to a definition of the operator equation

(1 -  L)d ( X t -  X Q) =  s tl t >  1, (59)

in terms of (57) and (58). Xt  is said to be integrated of order d.

A second definition (Phillips, 1999), corresponding to that in (2) above, defines the 

nonstationary fractionally integrated process X t directly in terms of the short memory 

inputs by using a finite order expansion of the operator (1 — L)~d, viz.

X* =  Xo +  ] T ^ k £ t_ fc, (60)
k= 0 '

where Et is a short-memory stationary process. This leads to the operator expression

( l - L ) d ( X t - X 0) = e t , t >  1, (61)

and again X t is integrated of order d. The two definitions (59) and (61) are different, 

however, because the stationary input formulation (58) implies that, by the first definition, 

X t ( =  X q +  Y?j=i (1 — L) l ~d involves inputs ea with s <  0. In fact, for each t we have

(1 - £ )  e , -oi- £ ‘ +  — II— £l- ‘ +  • +  (i +  fc)! k +  ~

so that the infinite past history of the short memory stationary inputs e„ figures in Xt- 

Some further comparisons involving the impulse responses may be helpful. When d G 

(5 , 1) , according to the first definition, X t is integrated of order d  <  1 and the increments 

zt constitute an I  ( / )  process with negative /  =  1 — d. In other words, the increments 

have negative correlation and are often described as antipersistent. On the other hand, 

according to the second definition, Xt  is integrated of order d  <  1 because the coefficients 

of Et-k are not unity but decay slowly, too slowly for the process to be stationary and have 

finite variance. Thus, the second definition gives the anticipated slow decay of the impulse 

responses directly, and as such is more apparently intermediate in form between a unit root 

process and a stationary long memory process or a short-memory process (but see (62) 

below).

In some cases, the empirical context may be helpful in m otivating the formative process. 

Suppose that d G ( l ,  § ) . Then, according to the first definition, X t  is integrated of order
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d  >  1 because it is the accumulation of stationary increments zt that have long memory with 

/  =  1 — d  >  0. According to the second definition, X t is integrated of order d >  1 because 

the coefficients of ee-fc increase as k increases. W hen it is known that the process of interest 

is the result of an accumulation of past long-memory shocks (perhaps, like the diameter 

of a tree), the first definition would seem to be appropriate. However, when it is expected  

that the shocks each period have short memory but may have increasing impulse responses 

over time on the observed variable, then the second definition seems more appropriate. For 

instance, in seeking to characterize a time series like GDP as a nonstationary I  (d) process 

with d >  1 , the first definition posits GDP as the sum of past shocks which have long 

memory, whereas the second definition posits that the shocks to GDP each period have 

short memory but the cumulative effect of these shocks is allowed to increase over time, 

perhaps by way of some internal feedback mechanism.

Whether the first or the second definition is used, it will often be useful to extract the 

impulse responses from the short memory components to the observed series. In the second 

definition these appear directly as the coefficients in (60). By rearrangement o f the 

series in the first definition, one finds that the impulse responses are the same in this case 

as well. In particular, it can be shown that an I  (d) process by the first definition can be 

written as

* £ =  X 0 +  £0 (d) +  £  (62)
fc=0

where the term £0 (d) has an order of magnitude that is dominated by that of the third term  

asymptotically. Thus, the essential difference between the definitions can be interpreted as 

one relating to initialization.

As with the definition of unit root processes, there are alternative ways of dealing with 

initial conditions for nonstationary fractional processes and these may or may not affect 

large sample behavior. If X q is taken to be any Op( 1) random variable then its value has 

no affect on large sample behavior. Similar considerations apply to the term £0 (d) in (62). 

However, when X q has the same stochastic order as X t for t  =  0 ( n )  then initializations do 

matter, as indeed has been found to be the case for unit root time series (e.g., Phillips and 

Lee, 1996, and Canjels and Watson, 1997). In the present case, the generalization might
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involve a distant past initialization of the form

[”*] /
ATo =  X S  =  J T

fc=0

or one might extend (60) directly by writing

y  _  V '  iZ lie -
A t -  2 ^ "fcT£-fc-

fc=0

In both these cases, the effective initialization is pushed into the distant past and is para

meterized by k , which measures the extent of the pre-sample history on the current data  

X t - While k  is not consistently estimable, in general, it will figure in the asymptotic theory, 

just as it does in the case of unit root asymptotics (Phillip and Lee, 1996). This chapter 

does not deal with this additional level of difficulty, but works from the definition (60) with  

Xo  =  O p ( 1 ) .
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Chapter 3

Local Whittle Estimation in Nonstationary 
and Unit Root Cases

1 Introduction

Semiparametric estimation of the memory parameter (d ) in fractionally integrated (1(d)) 

time series has attracted much recent study and is attractive in empirical applications be

cause of its general treatment of the short memory component. Two commonly used semi

parametric estimators are log periodogram (LP) regression and local Whittle estimation. 

Log periodogram regression is popular mainly because of the simplicity of its construc

tion as a linear regression estimator. Local W hittle estimation involves numerical methods 

but is more efficient than LP regression. The local W hittle estimator was proposed by 

Kiinsch (1987), and Robinson (1995) showed its consistency and asymptotic normality for 

d  G ( — 1 ,1 ) .  Velasco (1999) extended Robinson’s results to show that the estimator is 

consistent for d €  (—5 , 1) and asymptotically normally distributed for d 6  (— | ).

This chapter studies the asymptotic properties of the local W hittle estimator in the non

stationary case for d  6  ( 5 , 2 ), including the unit root case and the case where the process 

has a linear time trend. These cases are of high importance in empirical work especially 

with economic time series, which commonly exhibit nonstationary behavior and show some 

evidence of deterministic trends as well as long range dependence. The asymptotic proper

ties of the local W hittle estimator in the nonstationary case over the region d  €  ( 5 , 1 ) were 

explored in Velasco (1999). Velasco also showed that, upon adequate tapering of the obser

vations, the region of consistent estimation of d  may be extended but with corresponding 

increases in the variance of the limit distribution. For the region d  >  1, there is presently 

no theory for the untapered Whittle estimator and, for the region d  €  ( | ,  1), no limit distri

bution theory. The unit root case is of particular interest because it stands as an important
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special case of an 1(d)  process with d  =  1 and it has played a  central role in the study of 

nonstationary economic tim e series. It is also now known to  be the borderline that separates 

cases of consistent and inconsistent estimation by LP regression (Kim and Phillips, 1999) 

and, as we shall show here, local W hittle estimation.

This chapter demonstrates that the local Whittle estim ator (i) is consistent for d G ( 5 , 1],

(ii) is asymptotically normally distributed for d  G (5 ,  f )» (iii) is asymptotically distributed 

as a square of fractional Brownian motion for d  G ( | ,  1), (iv) has a mixed normal limit dis

tribution for d =  1, (v) converges to unity in probability for d  G (1 , 2 ) ,  and (vi) converges 

to unity in probability when the process has a linear tim e trend. The present chapter, 

therefore, complements the earlier work of Robinson (1995) and Velasco (1999) and largely 

completes the study of the asym ptotic properties of the local W hittle estimator for regions 

of d  that are empirically relevant in most applications. This chapter also serves as a coun

terpart to Phillips (1999b) and Kim and Phillips (1999), which analyze the asymptotics of 

L P  regression for d  G (^,2) .

The approach in the present chapter draws on an exact representation and approxima

tion theory for the discrete Fourier transform (dft) of fractionally integrated processes. The 

theory was developed by Phillips (1999a) and chapter 2 o f this dissertation and provides 

an apparatus for analyzing the asymptotic behavior of the d ft’s of fractionally integrated 

processes. The study of the limit distribution in the unit root case is based on an embed

ding and conditioning argument that uses an asymptotic representation of the dft of a short 

memory time series in terms of Brownian motion. The technique was developed in Phillips 

(1999b) to derive the asym ptotic distribution of LP regression in the unit root case.

The remainder of this chapter is organized as follows. Section 2 briefly reviews the 

representation and approximation theory and tailors it for our analysis in subsequent sec

tions. Consistency of the local W hittle estimator for d  G (5 ,1] and its inconsistency for 

1 <  d <  2 are demonstrated in Section 3. Section 4 derives the limit distributions. Results 

for fractionally integrated processes with a linear time trend are given in Section 5. Sec

tion 6  reports some simulation results and gives an empirical application using economic 

data. Some technical results are collected in Appendix A in Section 7. Proofs are given in 

Appendix B in Section 8 .
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2 Preliminary Representation Theory and Asymptotics

2.1 A  M od el o f  N onstationary Fractional In tegration

We consider the fractional process Xt  generated by the model

(I -  L)d { X t -  X q) = u t , t =  0 ,1 ,2 , . . .  (1)

where X q is a random variable with a certain fixed distribution. Our interest is in the case 

where X t is nonstationary and 5 <  d <  2 , so in ( 1) we work from a given initial date t =  0 , 

set ut =  0 for all t <  0 , and assume that ut {t >  1 ) is stationary with zero mean and 

continuous spectrum / U(A) >  0. Expanding the binomial in (1) gives the form

Y ^ L £ k {x t-.k - X o ) = u t ,  (2 )
fc=0

where

{d)k =  - fffc)- - =  +  k ~  ^

is Pochhammer’s symbol for the forward factorial function and T (•) is the gamma function. 

When d  is a positive integer, the series in (2) terminates, giving the usual formulae for the 

model (1 ) in terms of the differences and higher order differences of Xt.  An alternate form 

for X t is obtained by inversion of (1), giving a valid representation for all values o f d

X t =  { 1 -  L)~d ut + X o  =  Y ,  ^ T T ut - k +  X Q. (3)
fc=0

Throughout this chapter it will be convenient to assume that the stationary component 

ut in (1) is a linear process of the form

ut = C  (L) et =  ^ 2  CjEt—ji  J |cj I <  0 0 , C  (1) #  0, (4)
j= 0 j= o

for all t  and with e t — Hd  (0, a 2) and Eef  =  /z4 <  0 0 . Under (4), the spectrum of ut 
2 2is f u(A) =  J2 j^ o °jet ^ d  this specificity certainly involves a loss of generality in 

comparison with local assumptions on the short memory spectrum that sire used in other 

work (Robinson, 1995, and Velasco, 1999). However, (4) is satisfied by a wide class of 

parametric and nonparametric models for ut and it enables the use o f the techniques in 

Phillips and Solo (1992) and embedding arguments that are used later in this chapter.

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

72

Define the discrete Fourier transform (dft) and the periodogram of a time series at 

evaluated at the fundamental frequencies as

wa (As) =  Aa =  —  , s  =  l , . . . , n ,  (5)
V27tti n

l a  (Aa) =  W a  (Aa) W a  (Aa) .

Our approach is to algebraically manipulate (2) so that it can be rewritten in a convenient 

form to accommodate dft’s. The following Lemma by Phillips (1999a) leads to an exact 

expression that we can use for the model in frequency domain form.

2.2 Lemma

fa) I f X t follows (1), then

wx (A) ( l  -  eiA) =  D n (e iA; / )  wu (A) -  - j ^ U Xn ( / )  -  - ~ =  (e inXX n -  X 0)  , (6 )

where D n (e iA; / )  =  ££= o  (-= g± eikX, f  =  1 -  d, and

Uxn ( / )  =  D nX (e~iXL; / ) * „  =  £  /APe-*pV _ p ,  f Xp =  £  ^ ^ e * A. (7)
p=0 fc=p+1

(b) If X t follows (1) with d — 1, then

wx (A) ( l  -  etA) =  (A) -  (e inAX n -  X 0)  - (8 )

W ithout loss of generality and to simplify formulae, we shall hereafter assume X q =  0.

2.3 A pproxim ation o f  w x (Aa) and Ix (Aa)

Dividing both sides of (6 ) by ( l  — etA*̂  , we obtain the following expression for wx (Aa):

 ̂ D n (eiX- , f )  e,A* 1 Ux. n ( f )
wx (A,) — l  _  gtA> w u (As) l _ eiXt ■ (9)

Neglecting the third term of (9) as a remainder, uux (Aa) is seen to comprise two terms -  a 

function of the dft of ut and a  function of X n. These two components have very different 

characteristics. The first component is asymptotically uncorrelated for different frequencies 

As, while the second component is perfectly correlated across all Aa. As the value of d 

changes, the stochastic magnitude of the two components changes, and this influences the
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asymptotic behavior of wx (A3) . As shown below, when d <  1 the first term dominates 

the second term and wx (A3) and wx (Ar) are asymptotically uncorrelated for s ^  r. When 

d >  1, the second term becomes dominant and the wx (A3) are asymptotically perfectly 

correlated across all A3. This switching behavior o f wx (A,) at d  =  1 is a key determinant of 

the asymptotic properties of the local W hittle estimator. When d =  1, the two terms have 

the same stochastic order and this leads to a form of asymptotic behavior that is particular 

to this case. The next lemmas establish this relationship and are used as the basis of the 

analysis in the following sections.

2.4 Lem m a

Let Exn { f )  =  E p=0 h p e lp £n~,

(a) For d  E ( 5 , l )  ,

\ ds wx { \ s ) =  e$diC { l ) w E{ \ s ) Xd3C ( l ) s x . n ( f )  ^  eiX‘ X n
r r ° n + r3,n (d ) + r l n  (d ) ,

where E  . s n 

uniformly in s.

(b) For d  €  ( 5 , 1) .

1 — etX* y/2irn 1 — e,A» \f2nn  

=  0 ( A 3) , E  |r3n (d) |2 =  Of^s24- 4)  , and £ | r = n (d) |2 =  O [ f d~2n l~'2d')j

where E  . s n

(c) For d =  1,

X4w x (A3) =  e 2 diC  (1) w£ (Aa) +  r“n +  r bs n ( d ) ,

=  O  (A2)  and E  rb n (d) |2 =  O  ( s 2d~2)  uniformly in s.

Aawx (A3) =  iC  (1) w e (A3) -  i - ^ =  +  r“
y/2im

where E 3,71 =  O  (a 2)  uniformly in s.

(d) For d  €  (1 ,2 ) ,

c l - d \d  „iXM y
s l~dXdwx (A3) =  - S X  +  r3% (d) +  r» n,

1 — e‘A* y/2irn

where E r“n (d) |2 =  O (s 2 and E  rbn 2 =  O  (s  x) uniformly in s.
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2.5 Corollary

(a) For d  €  ( 5 , l )  ,

A f / X(AS) = e ^ C  (1) w£ (A3) —
A?C(1) ? > , „ ( / ) _______ ________
1 — e,A« \J2ttti 1 — etA* y/2nn

A? e»A‘ Jrn

+ K n  +  IZ,n(d) +  R C3,n (d),

where E  |i% n| =  O  (Aa) , E  | / £ n (d)| =  O  ( s d"2)  , and E  |i% „ (d)| =  O  ( s ^ n * - * )  uni

formly in s.

(b) For d  €  ( ± , l )  ,

A2d/x (As) =  1C ( 1 )|2 h  (As) +  F?,n +  (d ) ,

where E  |-R^n| =  O  (As) and E  i2*n (d)| =  O  (s'*-1 )  uniformly in s.

(c) For d — 1,

where E  IF?,

A2/ x (A,) =  C ( l )  w £ (A,) -  - = £ =  
I v27rn

=  O  (As) uniformly in s.

+  ^ i , n >

fd; For d<E (1 ,2 ) ,

„2 - 2d \ 2d y 2

(A.) =  J— +  J C . M> +

where E  |/% n (d)| =  O  ( s 1-d)  and E  =  O  ( s - *) uniformly in s.

3 Local Gaussian Estimation: Consistency for d  < 1 and In
consistency for d  >  1

We set up the local W hittle likelihood as in KUnsch (1987) and Robinson (1995). Specif

ically, we start with the following Gaussian objective function, defined in terms of the 

parameter d  and G

1 m  f  ^2d
Qm (G ,d) =  — '5 2 loe ( GA7 “ ) ■ + -£ - '* (-V)

j = i  L
(10)

where m  is some integer less than n. The local W hittle procedure estim ates G  and d  by 

minimising Q m (G, d) , so that

( 8 ,d )  = arg mm
0<G<oo, -±<d<A f<oo

Q m (G, d) ,
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which involves numerical optimization. Hence, it will be convenient in what follows to

distinguish the true values of the parameters by the notation Go =  f Uu (0 ) and do-

Concentrating (10) with respect to G, we find that d satisfies

d  =  arg min f?(d), 
d

where

R {d)  =  logG (d ) - 2 d - f > g A y, G (d) =  -J- E  A f / x (A ,).
771 . 771 ,j= i j=t

Velasco (1999) shows that d is consistent for do E ( 5 , l )  . Theorem 3.1 below establishes 

that d  is consistent for do €  ( 5 , l] and hence consistency carries over to the unit root case. 

However, Theorem 3.1 shows that, while G is consistent for do E (5 ,  l )  , it is inconsistent 

and tends to a random quantity when do =  1.

3.1 T heorem

I f  ^  +  +0 as n  —* 00, th e n  , f o r  d o  €  (5 , lj , d —>p do as n  —► 00.

3.2 T heorem

I f  i  +  ^ - * 0 f t s n - »  00, th e n ,

Go, for do E y
Go +  uj2B  ( l )2 / 2 tt, for do =  1

When do >  1, d manifests very different behavior. It converges to unity in probability, 

and the local W hittle estimator becomes inconsistent. Therefore, the local W hittle estimator 

is biased downward whenever the true value of d is greater than unity. Kim and Phillips 

(1999) show that the log periodogram regression estimator converges to unity when d >  1.

3.3 T heorem

If  d - 4 - S . _ > 0 o s n —► 0 0 , then , for  do €  (1 ,2 ) ,  d —*p 1 as n  —* 0 0 .
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4 Local Gaussian Estimation: Asymptotic Distribution

The following theorems establish the asymptotic distribution of the local Whittle estimator 

for do €  lj .  When do €  ( 5 , j )  , d is asymptotically normally distributed (c.f. Velasco, 

1999).

4.1 Theorem

V  m +  >̂gm —* 0  os n —► 0 0 , then, for  do €  ( 5 , | )  , we have

(d  — do) => N  ^0, .

For do >  5 , d has a non-normal distribution. This phenomenon occurs because, when

do is large, the stochastic magnitude of X n in the representation (6 ) becomes so large that

it dominates the behavior o f d.

4.2 Theorem

/ /  T  -f ——jsg 7̂1 —> 0 as n —► 00 , then,

(a) For do =  \  , if  E  |et|p <  00  fo r  p >  4,

y/m  (d  — do) = £x  +  C2.

where

0 , ~ ) ,  ^2 ^ ( 2 7 r ) - i 5 _ i ( l ) 2 .

(b) For do e  ( f , l )  ,

2- 2*. /'T , \  . ( l -do)(27T)2do- 2 r,  , „ 2
m ^ ( d - d o j ^  " 2 d o _ 1)2 •

When do =  1, the two main components of wx (As) , i.e. wu (Aa) and X n/y/2 im, have 

the same stochastic magnitude. This poses difficulties in applying central limit theory to 

a weighted average of Ix (Aa) . In order to circumvent this technical difficulty, we follow 

Phillips (1999b) and use a direct approximation (Komlds et al. (1976), Csbrgo and Horvdth 

(1993)) for the partial sum Sk =  Ylj= 1 £j- This approach gives a uniform approximation to  

Sk over 0 <  k <  n  in terms of a Brownian motion B  (•) with variance cr2. As a result, wx (Aa) 

can be approximated by a sum of two independent Gaussian random variables £a and rj,
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where is independent across s  and q  is common to all s. Then, conditional on 77, we can 

apply the central limit theorem to the weighted sum of w x (Xa) to establish the asymptotic 

normality of d. Because the application o f the central limit theorem is conditional on 77, 

the unconditional limit distribution of the local W hittle estimator turns out to be mixed 

normal (denoted as M N  below). Intriguingly, the variance of d  becomes smaller than the 

case where do <  1, as was found in the corresponding case for LP regression (Phillips, 

1999b).

4.3 T heorem

(a) If E  |et |p <  oo for  p  >  4 , m  —+ oo, and  m\ lô r̂  = 0 ( 1 )  as n  —» oo, then, for  do =  1,
n*~P

we have

mh ( d -  do) ~*d M N  (o , a2  (77)) =  J  N  (o, o2  (77))  <j> (77) dq, 

where 77 is N  ( 0 ,1 ) ,  <p (•) is standard normal pdf, and

2 /  \ 1 1 +  2772
4 1 4- 2t?2 +  i f '

3
(b) If  e t is Gaussian and X. 4. m —» 0 as ti —» 00, then, for  do =  1, we have

77Z2 (d  — do) M N  ( 0 , a2  (77)) =  J  N  ( 0 , a 2 (77)) <£ (77) dq.

4.4  R em arks

(a) When do =  1, the variance of the limit distribution of 7712 [d. — do) is less than |  since 

a 2 (77) <  j  a.s.. Numerical evaluation gives

°d  =  \  r °  4  dr] =  ° -2028-d 4 J-oo 1 +  2772 +  774 y/2 ^  V 2 /

Thus, the limit distribution of the local W hittle estimator has less dispersion than in the 

stationary case. A similar phenomena applies in the limit theory for LP regression (Phillips, 

1999b).

(b) The condition on the expansion rate o f m  becomes strong in the unit root case, but may 

be a consequence of the method of proof. When all moments of et are finite, m  =  o ( n 3 ) is 

needed. This condition weakens substantially when et is Gaussian.
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5 Fractional Integration with a Linear Time Trend

In many applications, a nonstationary process is accompanied by a linear time trend. Ac

cordingly, this section extends the analysis above to  fractional processes with a linear time 

trend. Specifically, the process X t  is generated by the model

(1 -  L )d { X t  -  X o  -  fit) =  Ut, t  =  0 ,1 ,2 , . . . ,  p ^ O  (11)

where Xq and ut are defined as above. Inversion o f  ( 1 1 ) gives an alternate form for X t,  e.g. 

an I  (d) process plus a linear trend

£—1 / j\
X t — (1 — L) d ut +  Xo +  fit =  y   ̂ k \ Ut~k ^  (1 2 )

fc=0

Now we obtain a representation of the dft of this process. By straightforward calculation1, 

we have

_J_ -  e,A‘ y /n  fl3)
“  l - e * A’ v/2F  C J

and it follow's that (assuming Xo =  0 hereafter)

p e iX‘ y / n  , „  ^   ̂ U x . n U )  e » - X nw-

We use (14) to examine the asymptotics of the dft and the periodogram of an /  (d ) process 

with a linear trend. The following lemmas give approximations. For all the cases below, the 

behavior of wx (As) is dominated by that of the trend or the final observation X n. When 

d  <  | , the effect of the trend dominates. When >  | ,  the effect of X n becomes dominant 

because X n =  Op (n d - ^) .

5.1 Lem ma

Suppose X t follows (11). Then,

(a) For d €  ( | , l )  ,

d_3  l —d \ d  \ S1~dXg etX‘nd~x .
n d a s  Xawx {Xa) =  y/27r - +  Ta’n ^  ’

where E  |r3>n (d) |2 =  O  (n 2d 3s2 uniformly in s.

‘See also Corbae, O uliaris and Phillips (1999) who give (13) and  recursive formulae for d ft’s o f higher 
order trends.
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(b) For d =  1,
j ,  , Aa e*A'

n

,2

n 2 AjWi (Aa) — _  e,Aj +  ra,n,

u;/iene F  |ra,n |2 =  O  (n l ) uniformly in s.

(c) For d €  ( l ,  § ) ,

, 3  j , . s 1~dXd e,A*nd_1 . „
nd 5 s 1 (A,) =  - / /  l  _  e,A. +  r*’n ^  ’

where E \ r 3,n {d ) \ 2 -  O (n 2d~3  ̂ uniformly in s.

(d) For d =  §,

, , , s l~d\ d e‘A* y/n s l~dXd elX‘X n
s 1 Xdwx (As) =  —n~----- jx-------7==----, ix— +  r9'n’

3 1 — e‘A* \J2 r  1 — e,A* y/2 irn

where E  |ra,n |2 =  O  (s -1 ) uniformly in s.

(e) For d €  ( § , 2 ) ,

s l~dXdwx (A,) =  -  x _  eJ .  y j2 rn  +  r*’n +  r*’n ^  '

where E  r“n 2 =  O (s -1 ) and E  rbs n (d) | 2 =  O  (n 3  uniformly in s.

5 .2  C o r o lla r y

T a 1 s,n

(a,) For d €  l )  ,

s2 —2d \ 2d 2d—2 
n2d - 3 s 2 - 2dx2dIx (As) =  +  ^  (<|) ,

where E \ R s ,n (d)| =  O (n d~ t s 1~d  ̂ uniformly in s.

(b) For d =  1,

n~l X2Ix (Aa) =  V2 ^  _  “i x . f f r  +  Ra n'

where F|-fts,n| =  O  (n - ^) uniformly in s.

(c) For d e  ( l ,  § ) ,

„2 - 2d \ 2d „ 2d- 2  

n*d-*S2~2dX ?Ix (Aa) =  +  *a,„ W) ,

where E \ R s ,n (d)\ =  O  (n d -^) uniformly in s.
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(d) For d  =  §,

„2 - 2d \ 2dA f / , ( A , )  =
52~M
II — e,A» |2

%/n X n
ll ~ 7 =  +v/2 tt y/2 im

2

s ,n?

where E  |i?s,n | =  O (s  uniformly in s.

(e) For d  €  ( § , 2)  ,

where E  Lff?,

(A,) =  +  ^  +  ( d ) '

=  O  and E  |i?^n (^)j =  O ^ 2' ^  uniformly in s.

5.3 Local G aussian Estim ation: Inconsistency in  th e  Trend Case

The following theorem shows that d converges to unity in probability when X t  follows (11). 

Therefore, the local W hittle estimator is inconsistent except when do =  1. In consequence, 

some caution is needed in applying the Whittle estimator to investigate the degree of long 

range dependence when a  time series exhibits trending behavior and the nature of the trend 

is uncertain.

5.4 T heorem

Suppose X t follows (11) and A  +  » 0 < w n - * o o .  Then , fo r  do G ( ^ 2 )  , d —>p 1 as

n —* 0 0 .

6 Simulations and an Empirical Application

First, we report simulations that were conducted to examine the finite sample performance 

of the local W hittle estimator using (1) with ut =  i id N  (0,1) ?  All the results are based on 

10 ,0 0 0  replications.

Table 1. Simulation Results for d  =  0.7 and d  =  1.0

n bias
d =  0.7 

s.d. t.s.d. bias
d  =  1.0 

s.d. t.s.d.
200
500

1,000

0.0002
0.0093
0.0101

0.1977
0.1451
0.1162

0.1336
0.1066
0.0898

-0.0235
-0.0129
-0 .0102

0.1779
0.1280
0.1019

0.1204
0.0960
0.0809

note: t.s.d signifies theoretical standard deviation.

2 We also conducted sim ulations w ith ut following a tv distribu tion  w ith v =  5 degrees of freedom. T he 
results were very similar.
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Figure 1: Densities of the local W hittle estimator: n =  500, m  =  n0 5

Table 1 shows the simulation results for d  =  0.7 and d  =  1.0. The sample size and m  were 

chosen to be n  =  200, 500, 1000 and m =  [n0 5]. The estimator is seen to have smaller 

standard deviation when d  =  1 .0 , corroborating the theoretical result.

Figure 1 plots the empirical distribution of the estimator for d  =  0.7, 0.9, 1.0, 1.5 when 

n =  500 and m =  [n0 5] . The estimator appears to have a symmetric distribution when 

d  <  1, and the positive bias and skewness of the limit distribution for d  =  0.9 is not evident 

for this sample size. W hen d >  1 , distribution of the estimator is concentrated around 

unity, again corroborating the asymptotic result.

Figure 2 displays the empirical distribution of the estimator when the process has a 

linear time trend. The parameter values were chosen to be d  =  0.7, /j. — 0.00, 0.02, 0.05. 

As expected from the theory, when the value o f /i increases, the distribution shifts toward 

unity.

As an empirical illustration, the local W hittle estimator was applied to the historical 

economic times series considered in Nelson and Plosser (1982). We also estimate d  by 

the modified local W hittle estimator (see chapter 2), which is known to be consistent for

0 <  d <  2 and invariant to a linear trend3. Table 2 shows the estim ates based on both

3 T he modified W hittle  estim ator adjusts the dft to take into account the second te rm  of (9). As discussed 
in chapter 2, the procedure is close to  one in which the  local W hittle procedure is applied to  differenced 
d a ta  and unity is added to  the  resulting estim ate.

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

82

5

i

d

10 *

Figure 2: Densities of the local Whittle estimator with trending data: n  =  500, m  =  n0  5

m  =  n0-5 and m  =  n06. These series produce long memory estimates over a wide interval 

that ranges from around 0.5 for the unemployment rate to 1.38 for the bond yield. For the 

unemployment rate, the local Whittle estimator (d ^ w ) and the modified estimator (cLm l w ) 

have values which are very close together, both indicating only marginal nonstationarity in 

the data. For the bond yield, the modified estim ator (cIm l w ) is very different from d^w- 

Especially for the GNP measures, industrial production and employment, the presence of a 

linear trend component in the data (which is supported by much of the empirical work with 

this data set following Nelson and Plosser, 1982) appears to bias d iy j  heavily toward unity. 

These results, in particular, suggest that, although the local Whittle estimator is consistent 

for 0.5 <  d <  1, the use of the modified estimator may be preferable, unless the time series 

clearly does not involve a deterministic trend or data detrending is conducted prior to the 

estimation of the long memory parameter.
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Table 2. Estimates of d  for US Economic Data

n
m  =  

d-LW
nu-5

dMLW

II6 
*<-o

Y *
dMLW

Real GNP 62 0.990 0.644 0.946 0.692
Nominal GNP 62 0.983 0.919 0.930 0.868
Real per capita GNP 62 0.976 0.650 0.912 0.700
Industrial production 111 0.918 0.488 0.968 0.570
Employment 81 1.001 0.655 0.977 0.685
Unemployment rate 81 0.507 0.520 0.705 0.718
GNP deflator 82 1.143 0.987 1.049 1.086
CPI 111 1.020 1.276 0.828 1.136
Nominal wage 71 1.080 1.080 1.015 0.973
Real wage 71 1.105 0.813 1.030 0.805
Money stock 82 1.042 0.930 0.993 1.202
Velocity of money 102 1.055 0.925 0.970 0.776
Bond yield 71 0.676 1.235 0.740 1.384
Stock prices 100 0.914 0.920 0.984 0.734

7 Appendix A: Technical Lemmas

This section lists some technical lemmas from chapter 2, to which the reader is referred for 

proofs.

7.1 C om ponent A pproxim ations (determ inistic part)

The following lemmas give approximate representations o f the sinusoidal polynomials 

D n and f \ p in (6 ).

7.2 Lemma

For /  >  — 1 and X3 =  —► 0, then uniformly in s,

D n (ea ‘ ; / )  =  ( l  -  eiX- ) f  +  O  (n ~ fs ~ l )  - (15)

7.3 Lem ma

For A |  0, then uniformly in A,

A - Z ^ - e ’* ) 7 =  e - f ^  +  0 (A), (16)

A - ^ l - e " * ) 7 =  e* fi +  0 (  A).
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7.4  Corollary

For /  > — 1 and X3 =  —► 0, then uniformly in s,

=  e - f /,' +  0 (A .)  +  0 ( s - 1- / )  -

7.5 Lemma

Uniformly in p and s,

r  ̂ 7 j  °  (P_/) ’ i 0Tf> ° ’
>,P f o r / € ( - 1 , 0 ) ,

( » )  7 a . p  =  ° ( p r i j ) ’ f o r / > - L

7.6 C om ponent A pproxim ations (stochastic  part)

The following lemmas give asymptotic approximations to the terms U\„

7.7  Lemma

For Xs =  _» o,

U \tn ( / )  =  C (1) ?A.n ( / )  +  r 3,n ( / )  ,

where
n — 1 __

?A n  ( / )  =  5 1  Pe ~'PX£n-p, 
P=0

and
2 f O (1) ,  for /  >  0 ,

E  |rs,„ ( / ) |  =  |  o  (n -2 /J  =  O  (n 2d- 2)  , for /  €  ( - 1 ,  (

uniformly in s.

7.8 Lemma

For f  €  (o> | )  and anV number L  such that L —* oo and L /n  —* 0, 

uniformly in s:

(a) E \e Xtn( f ) \ 2  =  O  =  O  ( n ^ )  ,

(17)

(18)

(19)

( / )  and X n in (6 ).

the following hold
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( «  £ & . „ ( / ) | 2 =  O ( l ' - V  +  -a L - 2' )  =  O  ( i 2" - 1 +  ,

(c) e i ? a . „ ( / ) |  =  0 ( l ! ' f  +  ( ; ) ’ r ' ) = 0 ( i H  +  ( 3 ’ t W

7.9 Lem m a

For /  €  (—1,0) , the following holds uniformly in s:

E  \ex, n ( / ) | 2 =  O  (n 1"2^ - 1)  =  O ( n ^ 1* ' 1)  -

7.10 Lemma

(a) X t =  C  ( 1) X f  +  r t, where X f  =  EjUo and

For d  €  (^,2^ and 1 <  t <  n, uniformly in t ,

'N t-

_ f  0 ( 1),  f o r d e ( § , l ] ,  
~ \ o  ( t 2^ 2)  ,, . w  ford 6  ( 1 , 2 ) ,

£ | X f |2 =  o ( n 2d- 1)  ,

(c) E \X t \ l  =  O (n 2d_l j  .

8 Appendix B: Proofs

8.1 P roof o f  L em m a 2.2

See Theorems 2.2 and 2.7 o f Phillips (1999a). ■

8.2 P roo f o f  L em m a 2 .4

Multiplying both sides of (6 ) by A, ( l  — e,A*) yields

\ dD n (e ,A*; / )  Ad
(A‘ ) =  ! : ea .  (A.) -  ^ ^ 7

^ , n ( / )  , e‘A-X n 
y/2 irn V 2 r n

K E n (e  1/ )  ̂ ^   ̂ _  d>* d in f i \ ,n  ( \  U r a f i _ U r 2
1 — e*A'

A 3 U \ mn  ( / )  _  A ?  C ( l ) ? A . n ( / )  , _ 3 , \  s

1 — e*A« y/2 nn  1 — e,A» y/2 irn n

(20)

In the proof of Lemma 2.5 of chapter 2, it is shown that

-u>«(A.) =  e%diC  (1) wE (Aa) -F r“ (Aa) +  r2 (Aa) , (2 1 )
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where E  |r“ (Aa) |2 =  O  (a 2)  , E  |r* (Aa) |2 =  O  , and E  |r2 (Aa) |2 =  O  { s ^ v } ^ )  ,

giving part (a).

For part (b), it follows from Lemma 7.7, Lemma 7.8 (a), and Lemma 7.10 (c) that

1 _  e»>«
U x . n U )  , e iX‘ X n 

\ / 2 irn \ f 2 irn
=  0 ( ^ d- 2n2d~2 ) = 0 ( s 2d- 2) , ( 22 )

giving the required result.

For part (c), from Lemma 2.5 of chapter 2 we have

2,a* X n
^avx (Aa) — Aa wx (Aa) +

1 — eiX' y/2 -nn

where E  |rStnj2 =  O  (A2)  uniformly in s. It follows that

A3w x (Aa) =  iC  (1) w£ (Aa) —  ̂ c»*. y/ îTu Ta'n

— iC  (1) W£ (Aa) +

(23)

iC  (1) we (Aa) -  (e * 1' +  O  (Aa)) (1 +  0  (A.)) - 4 2 =  +  ra,re 
v y v27r n

=  iC  (1) wc (As) — i n— 4 - 7*a/X  “  1 5,715v27rn

where we use the fact that E X 2 =  O  (n ) .

For part (d), multiplying both sides of (20) by s l ~d yields

s 1~dXdw  (A ) -  ( \  ) _  _  s '~dX-5  \ y'5 j  — - ,*\ \^Sj i  rr-----  « i\  IX-----  •
1 — e‘A* 1 — e,A* \ j 2 irn 1 — z ‘ \J2 -kti

From Lemma 7.7, Lemma 7.9, and Lemma 7.10, we have

2
s l ~dX jD n (e,A* ; / )

(Aa)
1 — elA*

UXmn( f )

=  0 ( s 2- M) ,

=  0 ( s - x) ,  E
s 1-dA^ e,A* X n
1 -  e,A» v/27rn

=  0 (1),
1 -  e*A‘ y/2 -KTl 

giving the required result. ■

8.3 P ro o f o f  Theorem  3.1

We follow the approach of chapter 2 and refer the reader to chapter 2 for details when 

they are not provided here. Define G(d)  =  G q^ l A2^ -d°̂  and S  (d) — R  (d ) — R (d o ) .

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

87

Rewrite S(d)  as follows:

S ( d ) =  R ( d ) - R ( d o )

, G ( d )  . G  (do)  , . _
=  log -  log —7  ̂ h log — 2d - 2do j  ^

2 (d—do)

G ( d )  Go  ' \ m  ^ J ' 2 (d  — do) +  1

1 m
—(2d  -  2do)  — log j  -  (log m  -  1)

+ ( 2 d  -  2 do)  -  log (2 (d  - d o )  +  l ) .

For arbitrary small A  >  0, define ©1 =  |d  : do — ^ + A < d < A / j  and 

©2 = { d : - I  <  d <  do — 5  +  A j .  W ithout loss of generality, we assume A  <  \ 

In view of the arguments in Robinson (1995), d —*p do if

and

as n  —♦ 00 , where

Pr

sup |T(d)| —■ p 0 ,
©I

( i n f S ( d ) < o ) 0 ,

G ( d o )  . G ( d )
- l o g ^ E ^ / ^ z

2 {d-do)

T ( d )  log Gq log G ( d )  ' 2 (d  — do)  -F 1

+ ( 2d -  2do)
1 m

— 5 3 l°eJ  -  (los m - !)m
m U

From Lemma 1 and Lemma 2 of Robinson (1995), for d  G © 1, we have

2 (d  — do)  +  1
m

- ^ i ^ l o g j -  (logm - 1) =  °  ( ~ T ~ )  ’m  \  m  J

■  ° u ) -
Thus, supQj |T(d) | —*p 0 if

sup
© I Go G ( d )

0 .

Note that

G ( d )  - G ( d )  
G ( d )

hereafter.

(24)
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[2 (d -  dp) +  1] £  T ,7=  i ( £ ) “  ^  [Af ° / x  (A,) -  Go]

[2 (d - r f o )  +  l]G o ^ E 7 = i ( ^ ) 2(<f_<it)}
A(d)
B ( d ) ’

(25)

and

Go G ( d )
B  (d) +  A  (d) '

B (d )

l0g( l^ ) +l0g(
*?(d ) \  , , / B  (dp)  +  A(dp)\

, B ( d o ) J  g  V B ( d )  +  A { d )  J
, . B ( d ) - B ( d « ) \  , . B ( d o ) - B ( d )  +  A ( d o ) - A ( d ) \

=  logl 1 +  — b w — J + l o g l 1 + -----------b ( 5 h a ( 5 ) ------------ ) ■

Therefore, by the fact that Pr (|log Y\ >  e) <  Pr ( |F  -  1 | >  e /2 )  for any nonnegative random 

variable Y  and e <  1, supQl |log ^G (do) /G o) — log (G  (d) /G (d ))  | —*p 0 if

D 0 .sup
e i

B { d ) - B { d o ) \  n , | B ( d b ) - B ( d )  +  , 4 ( d o ) - A ( d )
B W  h ” 0  and se,p l-------------B l d H A l d ) -------------

From Corollary 2.5 (b) and (c), we have 

A ™°L (Aj) =  | |G (1) |2 1£ (Aj) +  R jtn +  R j n (do) , for do G (A , l ) ,  

G (1) (Aj) -  for do =  1,

where E R?J,n =  O (Aj) , £  (d)| =  G , and £  £ £ n =  O  (A_,). Thus, in view of

the fact that Go =  / u (0) =  £  |G (1 ) |2 , (d) can be written as

1 /  i  \  r
A ( d )  =  [2 (rf -  rfo) -h 1] —  5 ^  ( ] ^ d° I x (Aj) — G 0]

j= i '

■ {
Ax  (d) +  A 2 (d) +  A z  ( d ) , for do G l )  ,

A \  (d) +  A 4 (d) +  ^5 (d) +  ^  ( d ) , for do =  1,

where g =  2 (d — do) +  1 and

A i  (d)
n | G ( l ) | 2 ^ / j

=  5 m  g U J W - 5 j

A 2 (d)
1 m /  1' \  2d—2do

m  “  \m y7 = 1 N

1 m /  i  \  2d—2do 
A 3 ( d ) = ^ £ ( i - )  / $ „ « > ) ,  to r—f \ m /  J j = l

A , ( d ) =  - 9 C <*>
to \J2 irn \ m / «fc(Aj)*]»

A s ( d ) -  1 f c T - 2
2 irn m  “  \ m /j=i m

m /  - s 2d—2 

£ ( £ )  ***■
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We proceed to consider the successive terms Ai (d) i  =  1, Chapter 2 shows that for all 

d € © i we have A \  (d) =  Op (m ~2A +  ti-1 / 2)  , A 2 (d) =  O p (n~lm ) , A e(d) =  Op (n ~ lm ) ,  

and A3 (d) =  O p (m d° ~ 1 +  m ~2A log rnj .

Next consider A4  ( d ) . Using the fact that

=  ^ - ' £ ' E E [c P e ~ i p X l ] M ,A ‘ ]
p=i<?=i

r2  —  -• • • _  f o-2/27r, if j  =  k, 
~  |  0 , if j  #  k,

p=i <?=l

E e * (A * -A 7 ) p (26)

we have

>=1

ws (^j)- E f - V771 ~  V 771 /__ 7 = 1  v '

=  ( i)
7=1

2d—2
".(A*)-771 j“  \ 7 7 l /

Therefore, E IA4 (d)| is bounded by O (771 2A)  for all d €  © i because E  \Xn/ y / n \2  =  0 ( 1 ) .  

For A5 ( d ) , from Phillips and Solo (1992) we have

= « f ( i
'  27T71 7 7 1 ^  V tT I ;  ^  277 m - ° °  771 ^  V t71

2d—2 u 2 B { l f
2?r

where =  erC(l)  and B  (r) is a standard Brownian motion.

In sum, A (d) is bounded uniformly for all d  6  ©1 as follows: for do €  ( 5 , l )  ,

A (d )  =  Op (m  2A log 771 +  71 1/2 +  7i 1m  +  m d° l )  , (27)

and for do =  1 ,

x l  1 ■_ m
27771 771

A (d) =  O p (m  2A +  71 1(/2 +  71 1771̂  +  ^

It follows that, for do 6  ( 5 , l )  ,

m /  • \  

§ ©
2d—2

(28)

0 !

and for do =  1,

sup |A (d) — A (do)| =  Op (771 2Alo g m  +  7i 1/ 2  +  n lm  +  m d° ^  , (29)

V2 /  n  m /  o \  2d—2
supM(<0 - A ( < W |  =  Op ( m - “ + n - 1/ 2 +  n - 1m ) + ^ ^ - g ( - )

=  Op (m ~ 2A +  n -1 2̂ +  n ~ 1m j  . (30)
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Finally, observe that

1 ^  /  \  2(rf— )
B ( d )  =  [ 2 ( r f - d o )  +  l ] G 0- ^ ( ^ j  = G 0 +  O ( m - 2* ) ,

i = i  '

uniformly for all d G ©i-

From (27)-(31) we deduce that

sup
0 i

sup
0 i

Also we have established

B(do)
B ( d o ) - B { d ) + A ( d o ) - A { d )

B (d )  + A  (d)

— op ( 1 ) ,  

=  op (1) .

where

G (d)  _  G ( d ) - G ( d )  £ (do)
G(d) G{d) *  G 0  ’

for do G ( 5 , l )  ,
^ (do) {  w2£  ( l )2 / 2tt, for d0 =  1- 

Now we consider ©2 =  |d  : — \  <  d <  do — \  +  A | . From chapter 2, we have

p r (brf 5  (d) <  0)  <  Pr ^  £  (ay -  1) *

where p  =  exp (m ' 1 J2T log j )  , and (see chapter 2 p.44)

, 2A—1

Qj = ( i y  ", for 1 <  j  <  p,
/ -• \  “ 2do — 1

, for p  <  j  <  m.

From Corollary 2.5 (b) and (c), (34) is equal to

Pr (B i  ■+■ B 2 +  B 3  <  0 ), for do G l )  ,
Pr (B \  +  B \  +  B 5 +  B6 <  0 ) , for do =  !•{

where

B x

B 2

b 4

b 5

m j = 1
1 m  1 m

77c « 7#!. ,
j= i i = i
v  1 m

E  (« i -  >) [” .  (-V) +  •V  2 f f n  m  “

27rn m

m 1 77i

£ ( 0 , - 1) .  B6 =  ^ E ( flJ - l ) ^
j= i m r=i
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We proceed to consider the successive terms as above. Chapter 2 shows that

1 m
B \ —*p Go— X I — ’ B 2  +  B 3 —*p 0 .

3 = 1

For £ 4 , the fact that m ~ 2 YijL  1 {o-j — l )2 =  O (m ~ 4A 4- m _1) (see chapter 2) and (26) yield

i = i
=  O (m  4A 4- m  ,

giving B4  =  op ( 1) .  For B5 , we have

* 2  1 ™ u;2B ( l ) 2 1
— t o  m ^ (ai "3=1 3=1

Be =  Op (1) follows from B^ =  oP ( l) -  From chapter 2, for sufficiently large m  we have 

£  £ /L i  (aj -  1) >  6  >  0. Thus,

1 m
B\ 4- B 2 4- B 3  —>p (ai  ~  — Go$ >  0>

B i  4 - B 4 4 - B 5 4 - B q  — *d I G o  4 -

3 = 1

u>2f l ( l ) : 
27T :) [=£‘* H 8 (“•

+
U32B  ( l ) 2 \  c a.s.

2  fl

i t  follows that
Pr (B \  4- B 2 4- £ 3  <  0) 
Pr (i?i 4- Z?4 4- B5 4- Bo

- 0  1
<  0 ) -  0 / a s m - *  00 .

<5 >  0 .

(35)

Therefore, d —*p do, giving the stated result. ■

8.4  P roo f o f  T heorem  3.2

Since d —*p do and (5(d) is a continuous function o f d, we may analyse G (do) • We have

G { d p )  — Gj d p )  _  ^  E y L i  I x (Ay) — Gp ^ A  (dp) ^  £  (dp)
G (do) Go “  B  (d0) d Go

We can write the final expression in the form stated for f  (do) and we have

G (do) —*d Go +  £ (do) ,

which gives the required result.
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8.5  P ro o f o f T heorem  3 .3

Define G(d) =  G q^  Yl'JLi and S  (d) =  R (d) — R ( l ) . Rewrite S{d)  as follows:

5 ( d )  =  R { d ) - R {  1)

=  log G (d) -  log <7 ( 1) -  (2d -  2) — 5 2  log Aym
3=1

=  log
G  (d)

1 v->m \ 2(d— 1)
G o — 2^3=1 Aj  

1 m
- ( 2d - 2 ) -  £  log Ai

3TT -  loS
G ( l )

Go

. G(d) , G ( l )  . l A . 2d 2 ,
-  losG ^ - 1°8 i 2+los

J=1

2 (d -  1) +  1

1 ^  \  
- ( “ - :2> ™ g ( ^ - -i f + i )

. G (d) . G ( l )  , ( l ^ . 2 d ~ 2 ,
=  ^ 7 5 7 5 7 - lo« - 7 3 r  +  l08  h r  /G(d) 

- ( 2d -  2 )

m i=i 2 (d — 1) +  1

1 m
— 5 2  log j  -  (logm  -  1) m  r—t3=1

+ ( 2d -  2 ) -  log (2 (d -  l )  +  l ) .

For arbitrary small A  >  0. define ©'t =  jd  :  ̂+  A  <  d <  A /} and 

©2 =  |d :  —|  < d <  |  + A } .  W ithout loss of generality, we assume A  <  |  hereafter. Then,

by the same argument as above, d —*p 1 if

sup l o g g M _ l o g C(i>
G(d) Go 0 ,

and

as n  —► oo. Note that

Pr 5  (d) <°) 0 ,

G(d) =  ( 2 d - l ) ^ E r = i A f / x ( A J)

(d) (2d -  1) G 0±  i A? d_1)

(2d -  1) (27T)2d- 2do m'2d~2 n2d°~2d-  ̂ ( j ) 2*- 2  J2~2d° A f ° /x (A,-)

(2d -  1) (27r)2d_2 Gbm a*-an a-M A ^ . 2d—2
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=  (2tt p »  

=  (2+ " “ °

2d —2

and

Therefore, sup©/ |log (G  (d) / G  (d)j — log ( G (  1) /O o )| —>p 0 if

| .4(d) — >1(1) | n J \ B ( d ) - G 0
SUP  T 7 n   “ ^p0 411(1 SUP  n -------©i I -A(l) I e;  I Go

0 .

From Corollary 2.5 (d), we have

where E

-•2—2do \ 2do y -2

(A,) -  j— ^ + * ? ,  ( * )  +  * 5 , .

/?£n (d)| =  o ( j 1-d)  and £  |^ , n =  O ( j - ^) • Thus, A  (d) can be written as 

A  (d) =  A i  (d) +  ^2  (d) +  ^.3 (d ) ,

where

Ai
. .  _  2d - i  ^  ( j  y d~* k

m  "  \ m /  ji _  e*Aj |2 27rn’

*« - ^ g ( i )  «
For yli (d ) , from Lemma 7.3 we have

j 2 - 2do Xf  ° _  j 2 - 2doX 2do- 2  ^  ^ ) 2d° ' 2 Tl2" 2*0

11 — e,A> |2 Aj- 2 11 — elAJ |2 1 + 0  (Ay)

and it follows that
j 2 - 2doX 2do ^  (27r)2do—3 ^ 2  _

_  e«Aj |2 27rn n2do_1 n’jf’

where £  |rnj | =  O (Ay). Thus, A \  (d) can be written as

4  r . n (2‘rr) 2 d o ~ 3  X 2 2 d - l ^ f j  V2d~ 2 2d -  1 ^  /  j  A2*"2 
1 n2^0 -1  m  ^  V m / m  “ J \T n /

Furthermore, the fact that 2<̂ ~1 5Iy=i (m ) = 1 + 0  (m _2A) and

= ° ( ^ g ( - ) M"2") = 0 (""ro)
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yields

A i (d ) =  n 1~2d° (27r)2d°-3  AT2 +  Op (rn~2A -F n _ 1m ) . 

For A 2 (d) and A 3 (d) , we obtain

■i* m i  = o ( i J ; ( i ) MV * )

=  o  ^ l - 2d ' £ j 2 d - * > - 1

{ O  fm 1-d°) for 2d — do >  0

O \rnL~2d log rnj for 2d — do <  0

=  O  (m 1-efo +  m ~ 2A log rnj ,

£ |A 3 (d)| = 0  3  ’ j  =  O  ^m 1 2d ' f ^ j 2d i j  =  o ( m  * + m  2Alo g m ).

(39)

Therefore, we deduce that, uniformly over d  €  0 j ,

A {d )  =  n 1_2tio (27r)2d°-3  X 2 +  Op (n -1 m +  m 1-<l0 4 -m -2A logm ) ,

B (d )  =  G o ( l + 0 ( m ~ 2A) )  ,

which gives

sup
B  (d) -  Go

Go
0 .

For A ( d ) , from Lemma 7.10 and Akonom and Gourieroux (1987), we have 

n i-2dc ( 2 ^ - 3  * 2  (27r)2do“ 3 G ( l ) 2 o-2^ , !  (I )2 ,

where B j  (1) =  T (d 4- l ) -1  Jq (1 — s)d dB  ( s ) . It follows that, for d €  © i,

A (d )  — A  (1)  __________ Gp (n ~ 1m  +  m 1"*0 +  m ~ 2A logm )__________

(1) n l ~2d0 (27r)2do-3 X 2 4 - Op (n~l m  4- m l~d0 4 - m ~ 2A logm )

Because the denominator is op ( ( logm )- 1 ) and P r ( A ( l )  (logm ) <  e) —* 0 for all e  >  0, it 

follows that
A ( d ) - A ( l )

e f  A ( l  — 0 ,
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and we establish (36).

Now we consider ©2 =  : —5 <  d  <  £ -t- a |  . Let p  =  exp (m ~ l J2T l ° g i )  - Then.

S  (d ) =  log { D  (d) /D  (1)} , where

1 A  n \ 2{d~ l)

It follows that

1 ~ 

m  \ P J

1 m
hjf  D (d )  >  — ^  a j j 2 Ix ( A y ) ,O' m

where

Then,

{ / „ \2A-1
( * )  , for 1 <  j  <  p,

/  \  ~ 3 , for p  <  j  <  m .

Pr ^inf S  (d) < 0 ^  <  Pr ^  (a, -  1) j 2 Ix (Aj )  <  0

=  Pr (Ay) <  o j

(40)

From Corollary 2.5 (d), (40) is equal to

Pr (B \  +  B2  +  B 3 <  0 ) ,

where

. m  »2—2do \ 2<io yr2

J | i  - eiX>\ 27rn
1 m 1 m

B 2 =  - i  £  ( a , - 1 ) /$ „ ( < * > ) ,  B 3 =  - ' £ ( a j - l ) B bjtn,
171 j= i  i = i

with E  K j n (d)| = 0  ( i 1-d) and £  .Ry n =  O ( j - *) • We proceed to consider the successive 

terms as above. For B i,  it follows from (38) that

B l  = ^ ^ L p a j - 1 ) + o P U t ^ - ^
3=1  \  J =1

A s m - *  0 0 , p ~  m /e  and J2i<j<p aj  ~  2Se- yiew ° f  the fact that

m      /  y-m \

£ ai  =  £  ai +  £  aj = 0 ( m )  +  o(p3 X ~  d x \  =  O ( m ) ,
J = 1  l< j< p  p + l< j< m  \  J p  /
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we have

E  |Bo| said E IB3 I sire o ( l ) , because

_ 1 - 2 A  P „ 3  rn

m U m

p 3 m
£  J - 2- *  = 0 (m —2A lo g m  +  m 1-*0) ,  

i= i  i=p+i

1 V"' P1_2A _2A —2 p 3 —2 /O /  - 2A i ,
2 =  —  E J  J + -  E ^ = ° ( m l ogm  +  m  2 j ,

j = i  j = i  j = p + i

and m -1  Y T  =  O  ( 1-do) , m _1 Y T  J~* =  O  ( m _ 2 ) ’

Choose A  <  1 / (2e) <  1/4 with no loss o f generality, then for sufficiently large m,

- £ ( < * ; - ! ) >  — Y 1  aj - l ~ - ± - - l > 6 > 0 . m f - r w  ’ m  . j r i ,  2Aej = i  i < j < p

Hence,

i < j < p

\ 2 d o - 3/'9 _ '\2d °—3 v -2 -j m
B i + B 2 +  B3 =  n2d o - i ~  m  ^  ^  +  °p ^  ’

j= i

and it follows that

Pr (Bj +  B2 +  B 3 <  0) —<► 0 as m —► 00 .

Therefore, d —>p do, giving the stated result. ■

8.6 P roof o f  T heorem  4.1

Because the proof follows the same argument as Theorems 4.1 and 4.2 of chapter 2, we 

provide here only the relevant parts. We w'ork from the first order conditions for d, viz.

0 =  &  (d) =  m  (do) +  bt id*) (d -  do) ,

where |d* — do| <  |d — do|, and

4 [ f t  ( d )  f t  (d) -  a  (< o 2 l  e  1 ™ M
1------------------------------- 1, F t d =  -  J }  ( logj)  A2 J . (A,)m  J

(41)

m '{d )  =
F0 {d)z - J=1

The condition on m  and n implies that d  is consistent, and from (29) smd (31) we have

B (d )  - B ( d o )sup
©i

sup
0 i

B  (do)
B  (dp) — B  (d) +  A (dp) — A  (d) 

B(d)  +  A(d)

=  op ((logm ) 6)  ,

=  ° p  ( ( logm )- 6 )  ,
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which gives R" (d*) =  R ” (do) +  op (1) . Now, from Corollary 2.5 (b), we find

l m
Fk (do) =  -  £  (log j ) k A fo /x  (Aj) =  Ci +  C2 +  C3,m. 4 ■

where

m T-<.

Cl -
m  t~*J = 1

I m  -j m
C3 =  - 2 ( l o g i ) ‘ 4 „ ( c i 0).

j= i i= i

From the proof of Theorem 4.1 of chapter 2, we have Ci =  ^  YIJLi (log (Go +  op (1)),  

E\Cv\ =  o ( ( logm)fc)  , and E\C$\ =  o ((logm )*) . Hence

Fk (do) =  Go ^52^)kmm  r ,
j= i

[1 +  op ( 1) ] ,

and it follows that

R!' (do) =  4 +  op (1) .  (42)

Next we consider the first term on the right side of (41). It follows from chapter 2 that

m?R! (do) =
2

\ jm E S L i VJ (Aj) -  Go]

G (do)
(43)

where
^ m  i  m

i/j =  log A j loS XJ =  loS3 ~  ~ 5 2  log.?’
171 j = 1 j= l

and YljL i =  0- For the denominator, from Theorem 3.2 we have

G (do) —*p Go-

By Corollary 2.5 (a), the numerator can be decomposed as follows:

m 9

(44)

-7=  (A,) -  Go] =  £  Dt ,
V J=1 Jt=l

where

2 | C ( l ) | 2 ^h  
D i = ' At— X > j

D 2 =
2 | C ( 1)|2 ^ .  Aj* |gA,n(/b)|'

v/m “  J |1 -  e,AJ |2 27m
2 Aj*. D 3 - - ; = ~  ^ v i T --- -

y / m 2 v n ^ 'l J |1 — eiA>|2 ’
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2 |c ( i ) rU  4 = ----------7 = —y/m
m

J=1

A f  gAjn ( / o ) *  , A f  £Ajn ( / o )( A , )  J , — v- u-— |------- — *J.n w u /e 2^ * ^  (A,)*
1 — e -lA2 x/2^  1 — e tA2 V

D 5 =  -
2C ( 1) Arn

>/ni y /2 irn 

D 6  _  * £ > £ £ > ,

\dop-iAj \do „t'Aj
ef •* fwe (Aj) Y ^ -p n - +  1 L~7A- e~f ^  (Ai)*

v/m 27m —  
v  j = i

A^iOg-tAj ^2doeiXj
7 7  ijri2^A>n (^°) +  77^ o - |2 ^Ajn 11 — e*A-> | 11 — etAJ |

771 rt TTl

d 7  = D * “  Dg v^ S I/^ . » ( d0)-

From the proof o f Theorem 4.1 of chapter 2, we have D \  —*•<* IV (0 ,4Gg) and £>2 -f- A i 4- 

D 7  +  Dg +  Dg =  op ( 1) .  For £>3 , £>5 and £>6 , we can apply the proof of Theorem 4.2 of 

chapter 2 with replacing do in chapter 2 by do to show that D z +  D 5  +  Dq =  op (1) . 

Therefore, we obtain

w h U  (do) =► + - N  (0, AGl)  . (45)

It follows from (41), (42) and (45) that

m iR ?  (do)
R" (d'

T7T.2 (d  — do) =

giving the required result. ■

8 .7  P roof o f  T heorem  4.2

The proof follows from the proof o f Theorem 4.4 of chapter 2, replacing do by do- First, the 

conditions on m  and n imply that d is consistent and

B ( d ) - B ( d o )
sup
e i

sup
01

B{do)
B  (do) — B  (d) +  A  (do) — A  (d) 

B (d )  +  A  (d)

=  op ((log m) 6)  , 

=  Op ( ( lo g m ) - 6 ) ,

which gives R" (d*) =  i?" (do) +  op (1) .  Recall

m ^—2do -). £J2 -+- B \  -F D $ +  Dg  +  D j  -F D g  -F Dg)
m 2 2d° (d  — do) =

4Go +  Op ( 1)
m § 2do/?3

4Go +  Op (1)

(46)

(47)
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where

2 A 3 A .  A f  _ 2 (2 * f * - »  Xjj f .  m
V 'm 2 7 r n "  J | l  — eiA>|2 \/rn 27rn2<io_1 "  3 p

From the proof of Theorem 4.4 of chapter 2, we have

.2dn—2 (2do - 2 )m 2̂ - 1 ,
I > ^  =  o h  - i f 2 +  Q ( lo S ™ )*j —i (2do 1)

and, for do €  [ f , l )  ,

m i  - 2dn n  , ^ rf'ir’\2<io-2 C ( l ) 2 <72 D ( i f2 2d° - 2
~ 2^ ~ ^ - l(1 )  (2 do — l )2

For do =  | ,  (46) converges to JV (o, and

m l - * * *  (1  -  do) ( * > ■ * % , _ ,  (1)2 .  ^ y i  b _ l (1),  .
4G0 +  ° p ( l )  ( 2 * - i f  " J

For do € (§,  l )  , (46) is op (1) and

4Go +  °p (1) (2do — l )2

giving the required result. ■

8.8 P roof o f  T h eorem  4.3

The condition on m  and n implies that d is consistent and Ft" (d*) =  Ft!' (do) +  op (1). Now, 

from Corollary 2.5 (c), we find

m
Fk (do) =  -  y ;  (log .7)* AY ° I X (Ay) =  C l +  C2 +  C3 +  C4,T71 ^

J= 1

where

Ci =  C2 =  - - f f  E  (log j)*  [u;g (Aj) +  n,g (A,-)*]
“  m v'27rnJ=lm  . , j =1

1 -y-2 m I
<2 > =  =m  2 irn —  m Ji= i  i= i

and £ =  O (Aj) . From the proof of Theorem 4.1 of chapter 2, we have Ci =  

i  Yl'JLi (log j ) k (Go +  Op ( 1)) and E  \C4\ =  o ((logm )*) . Next consider C2. In view of the
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fact that E  [we (A_,-)* w£ (A*)] =  §^1  { j  =  A:}, we have

1 m  I Tn

£  £  (log})“ W' (A,) -  E  (logi)‘ <0,  (A,)*
m , t !  ,m teT

( 1 m
^ X > ^ >

=  o ((log m )2*) .

It follows that 

Hence

and we obtain 

# '{d o )

C2 =  Op (1) X  Op ((logm )*) =  Op ((logm )*) .

F t (do) =  (<3o +  ± g  (logJ)* [1 +  Op (1)] ,

4 [f 2 (do) Fo (do) — Fx (do)2]

Fo(do)2

* (Go +  [ £ £ ? =  I ( i°g j )2 -  ( £  ET=» M '

(Go +  S ) 2
[1 4- Op (1)]

— 4 +  op ( l ) .

Recall that (note that Y?p=i uj  =  0)

m , R ( d o )  -    e i S -------------------  g w ,------------ '

From Lemma 7.10, we have

X n _ C ( 1 )X *
y/2 im  \ / 2 tt n

+  rn =  C  (1 ) w£ (A0) +  rn,

where F |r n |2 =  O  (n_1) . It follows from (50) and Corollary 2.5 (c) that

~7 =  5 3  (Ai) =  D l +  D 2 +  D 3, y/rnf=i
where

D \  =

d 2 =
_2  
V™ i

m  a  h i

U3^j,n' =  53 VjRj.n'
j = 1 V j= l

(48)

(49)

(50)
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and E  =  O  (Aj) and E  /2j>n| =  O  ( n _ i )  . It is straightforward to show that E  |£>2| =  

O (n ~ l m i  logm ) and E  |ZA31 =  O  logm ) , and hence both Z?2 and D 3 are op (1) .

From Theorem 3.2 of Phillips (1999b), we have

w e ( As) =  '  [ l  e 2 ™ d B { r )  +  o v ( - ? -
V2n Jo \n * ~ p  )

w e (Aq) =
y/2 n

B  (1) ■+■ Op (* )■
where the error magnitude holds uniformly in s  <  m. Let us define

- i :
,2 iriar

where W  (•) is a standard Brownian motion. The variates are independent complex

Gaussian N c (0,1) and are independent of 77, which is real Gaussian N  (0 ,1 ) .  Then, it follows 

that

\we (^j) ~  we (^o)l =  0_27T 
2

27T
o~ 1 12

j - v  +  op f - n r )
\ n 2 p J

~  H °p ( “ P 1”)  +  °p ( - ^ rr )  ’ ^

where =  signifies equality in distribution, and the error magnitude holds uniformly in j  <  m. 

Applying the Cauchy inequality

f j  -  771 / y /m  and y j  =  VjOp ( m / n 2 ~p') , we obtain

Ag*-'KA))’ s £ * • ( & )

tO X j  =

— Op ( 1) x o.
( m 3 (log m )“

I n 1- ?
— Op (1),

»3by the fact that r _^m =  O  (1) .  It follows that the other remainder term in (51) is op ( 1) .
n* p

Therefore, we have

v j= i

2 _2 Tn
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Using the argument in Phillips (1999b), let us write ^  =  Ci j  +  C2j z- The components Ciy? 

are independent and each is N  (o, . Then

, 2
2 k J - r , | 2 =  2 — G jn.( C l j - V )  + C 2j

Conditioned on 77, Ci j  — 77 is iV ^—77, ^  , and so, conditional on 77,

(c  U -  T?) +  <2j  _  2
J , 7 _  1 / 2  - X 2 W -

Thus, conditional on 77, the family {Gj V}™ are independent and identically distributed non- 

central chi-squared vaxiates w ith two degrees of freedom and noncentrality parameter 6

where

* “ ( 17^ 5 )  = 2 ”2'
Let E { G j V\ri) =  Mr, and U ar (GJT?|77) =  <r2. From the moments o f non-central chi-squared 

random variables, we get

Mv =  2 +  2t72, o-J =  2 (2 +  4?72)  .

Thus, conditional on 77, Gjv is fid  ( m-t,! and it follows that

^  E  E  - i  ( ° *  -  »*,) - m  *  ^ 0 ,o*  i  f ;  ̂  j  j  =  jv  (0 , <7?),

by the Lindeberg-Feller central limit theorem (c.f. Robinson, 1995, p. 1070). From (28),

the denominator of (49) is (note that Go =  |C  (1)|2)

v 2 c n ^ 2 j f c2 /  \
G(rfo) =  A(<fr)+G 0 =  Go +  ^  +  oP ( l)  = G 0 +  + o p (1 ) = G o ( i  +  t72) + o p ( 1)-

Therefore, conditionally on 77, we have

■ $sT ?= i ^ 7 ,  (A,-) _  g o ^ s S r - t ^ - C j . , +  < » (!)
G(do)  Go (1 + T72) + Op (1)

V j G f r  /  4 (1 +  2 t 72 )  \
=   W  + < »  ( D - > - *  ( 0 ,  ( i  +  t)2),  j .

It follows that, conditionally on 77,

1 /  
7712

\  Hf (do) 1 4 ( l  +  2?72) \  _  /  1 1 +  2t?2 \
(d  -  do) =  — ■ -------  4 (°’ (1  +  ^ ) »  j
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Unconditionally, we therefore obtain

( d -  do) M N ( o l  l  +  2r?  ^
\  ’ 4 l  +  2r,2 +  T r * )

giving the required result. 

When et is Gaussian,

2 ^k e  (Aj) -  W €  (A0)| =  —  Zj -  T)
2  7T

holds exactly. It follows that 

2 m^  V '  \2<io r / \ \ =  k  ( 1 ) | 2  g 2  V p* 9 I £ _
v j= i v j= i

+  Op (1) ,

G(do) =  G o ( l  +  r/2) + o p ( l ) ,

under n -1 m i logm  —► 0 , giving the required result. ■

8.9 P roof o f Lem m a 5.1

For part (a), multiplying both sides o f (14) by nd~*sl ~d Xd ( l  — elX‘ )  yields

n  2 s 1 dXdwx (As)
s 1-d A? elX*nd~l nd~%s1~dXd

=  -f i-
1 -  eiA« v/27r

From (21) and (22), we have

n d ~ 2 s l ~ d Xd

+
1 — etA*

A , («“ • ; / )  w . (A.) -  =  O ,' ' y/2 -KTi \ f 2 irn v y1 — elAj

and Corollary (a) follows from the fact that

s 1-d A« eiX,nd~l
=  0 (1).

1 — eiA* y/2 n

Paxt (b) follows from (14) and Lemma 2.4 (c). Part (c), part (d), and part(e) follow from 

(14) and Lemma 2.4 (d). ■
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8.10 P ro o f o f  T heorem  5.4

We can apply the technique used in the proof of Theorem 3.3 with modifying definition of 

A (d) and Bk (d ) .  First consider the case do G (5 , § ). For d € © i  =  { d : ^ - F A < d < A / } ,  

let A  (d) be defined as

1 m  /  a  \  2 d — 2  

A  (d) =  n 2* - 3 (2d - 1 ) ^ 1 ;  ( £ )  i 2- 2d0A fofy (A j).
j = 1 v

Rewrite A  (d) as A  (d) =  A \ (d) +  A2 (d ), where

and

W m £ } \ m /  | i _ e « , | 2 2tt

9 , /   1 m  /• -- \  2d—2
A2 (d) =  f i - i W i )  * , * ( * ) ,

m r-r \m Jj= i

_  J O (ndo~%jl ~d°') , for do G lj , 

|  O (n'*0 - ! )  ,£?|ft,-,n(do)l -  1 for do € ( 1, 1 ) .

For Ai (d ) , from (37) we have | l  -  eiA> | 2 =  (27r)2d° ' 2 n2~2d° (1 +  O  (A y ) ) , and

it follows that

11 — e i  | 2 »  '

Hence, A i (d) =  n 2 (27r)2<fo-3 +  o (1 ). For A2 (d ) ,

1 |  O  ( n ^ - i m - 1 E ”  0 ' M ) M~ 2)  foe *  e  ( l ,  §

O r n ^ - im 1- 2̂ ^ ^ -1-410)  for rfo €  (£ , lj
O j M- 2)  for do €  ( l ,  §)

(52)

■!
J  O fra* im 1 * )  for do G f^ , 1 

|  O (ra*- §) for do €  ^1 , |

=  o ( l ) ,

because ndo~i'm 1~do =  (m/ra)1-*  n~* —» 0. It follows that sup@/ |(A (d) — A (1)) /A  (1)| —*p

0. For d €  ©2 =  {d  : - 1  <  d <  5 +  A | , let Bfc defined as

1 m  -2 -2do  \2<io „ 2 d o -2

*  =

1 m
« 2 =

m i= l
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As n —* oo, B i >  6  >  0 by (52). For do €  ( 5 , lj , E |i?2 l is o ( l )  because

1 m
=  n*>-»*—  £ / * - * + „ * - § £ -  £  J

r n  m  m
j= i

m r—; m  .
j = i  j = p + i

=  0  (ri*° 2m 1 ^  j  , 
1 7,4

—  nd° ~ i  =  O .

For do €  ( l ,  § ) , B2  =  op (1 ) is straightforward, giving the required result. 

Next consider the case do =  5 . Similarly to the above, define

7 m  /  ~ \  2d—2
A(<fl = ( M - l ) - W i )  Jl-“ )A5*/, (A,),

i= i

and

^ i(r f) = 

A2 (d) =

n ^ [ \ m ]  11 — e,A> |2
m /  . v 2d—2

£(£)J=1

2 d 
m

2 d - I  m

y/n X n 
f t —7== +

\ / 27r  \J 2 tc ti

where E  \Rj,n\ — O ( j  2 J . From (37), we have

A x (d) = n
+  op (1) .

A 2 (d ) =  op ( 1) is shown in (39). Thus supe^ |(A (d ) — A ( l) )  /A ( l ) |  —>p 0. For d  € ©2, let 

Bk defined as
27 m  ~2—2do \ 2 do

B l =  1 ) - — ^ 0-
|1 — e‘A>|i= i

m

, Xn
n —? =  +V 2 n y/2 irn

1*  = - E ( % — n f t . -m  r , j= i

It follows that S i > 5 > 0 a s n —>oo and B 2  =  op (1) (see B$ in proof of Theorem 3.3 ). 

For do €  (§ , 2  ̂ , the proof follows from the proof of Theorem 3.3. ■
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Chapter 4

Pooled Log Periodogram Regression

1 Introduction

The model we work with is a stationary Gaussian long-memory process X t whose spectral 

density has the form
-2 d

f x x  W  =  1 — e /« « ( * ) ,  (1)

where —1 /2  <  d <  1 /2  and / uu (A) is a symmetric, periodic (with period 27r), positive, and 

continuous function bounded above and away from zero w ith a finite third derivative. Our 

objective is to estim ate the parameter d in (1), which governs the long-memory property of 

Xt- The time domain version of (1) has the form (1 — L )d X t  =  ut , where ut is a covariance 

stationary time series with spectral density f uu(A). It is often preferable to leave the pre

cise generating mechanism of ut unspecified, so that the treatment of ut is nonparametric. 

The estimation of d  then falls within the framework of semiparametric methods. The most 

common estimator for d  in this framework is provided by log periodogram regression, which 

was proposed by Geweke and Porter-Hudak (1983) and is sometimes called the GPH esti

mator. Rigorous analysis by Ktlnsch (1986), Robinson (1995), and, most recently, Hurvich, 

Deo, and Brodsky (1998) followed the earlier work and established asymptotic properties 

of the estimator, including consistency and asymptotic normality and an optimal formula 

for the choice of the number of periodogram ordinates used in the regression. There is now 

a large and growing literature on the subject, the estim ator is commonly used in empirical 

work, especially in economics, and it offers the computational convenience of least squares 

regression.

In view of (1), we have the following relation between the spectral density of X t and ut 

in logarithmic form

In (f x x  (A)) =  —2d In 1 -  eiA +  In (/„„ (A )).
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Using periodogram ordinates in place o f the actual spectra and evaluating these at the 

fundamental frequencies As =  2jE£s s =  1, ...,n  — 1 leads to the ‘regression’ relationship

I n f c  (Aa)) =  —2<fln 1 -  eiX* +  In (/uU (As)) +  U  (As) , (2)

where Ix x (^ s )  =  w x (^ s)wx (^ s )m and “>x(As) is the discrete Fourier transform w x (As) =  

Yl?=i X te'tX'. The error in (2) is

t t  f  \  \    i «  ^ X X  ( ^ a )

By virtue of the continuity of f uu, / utl (A,) is effectively constant for frequencies in a shrink

ing band around the origin. This motivates the log-periodogram regression estimator of d, 

which is based on a linear least squares regression over frequencies s =  £ +  1, . ..,m  (with £ 

a trimming number and m  a truncation number) leading to

In { I x x  (Aa)) =  —2d  {£) In 1 — e ,A* +  /2 +  error (3)

and a class of estimates d (£) and /x that depend on a subset of m  — I frequencies. Under 

the rate condition ^  —i> 0 , the regression effectively uses 0 (m ) periodogram ordinates 

as n —* oo.

The heuristic motivation for this regression is based on the idea that the errors U (As) 

in (2 ) would be asymptotically independent across frequencies if the spectrum f x x { A) were 

bounded. But, in the present case that is not so, and the errors U ( \ a) are asymptotically 

correlated as shown by Kttnsch (1986), a feature that suggests the trimming of some (£) 

observations away from the origin. Robinson (1995) proved that d (£) is consistent and 

asymptotically normally distributed under some additional conditions on £, m , and n. Hur- 

vich, Deo, and Brodsky (1998) derived the asymptotic bias, variance, and the mean squared 

error of d  (0 ), the original GPH estimator, and showed under some stronger conditions on 

m, n, and f uu (A) that

y/m  ( d ( 0) — d j N  ^0, .

The GPH estimator achieves consistency and asym ptotic normality by using only m  

periodogram ordinates at frequencies As =  2 ir /n , ..., 27rm/n with m /n  —* 0. The truncation 

at Am implies that as n  increases, the estimator uses a smaller and smaller proportion of the
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full frequency band [0,7r], so that the effective band shrinks to the origin. The shrinking 

process is deliberate in the design of the GPH estimator because, given the nonparametric 

specification of j uu (A ), it is natural to confine attention in the regression to an immediate 

neighbourhood of the origin A ~  0, because in this case (1) has the simpler asymptotic form 

f x x  (A) A 2dG  as A —* 0 + , with G  =  / uu(0) constant. However, as is apparent from

(2), the periodogram at higher frequencies Xa (s =  m 4- 1 ,.., [n/2]) continues to contain 

some information about d, although the intercept involves f uu (As) and will now vary over 

frequency bands to the extent that f uu (A) is not constant. This intuition indicates that 

conventional log periodogram regression may discard some information in the data and 

gains may be achieved by using more frequency bands while at the same time allowing for 

variation in f uxi (A).

Accordingly, we now propose a new procedure for estimating d  that builds on this idea. 

The method is a pooled log periodogram regression that is taken over the wider band of 

frequencies As =  s  =  1, ...,m L  with L —* oo and m L /n  —» 0. This method corrects for 

variation in the regression intercept by taking subgroup means in the regression, so that it 

allows that the error spectrum / uu (A) may be nonconstant across bands. The new estimator 

treats In ( /utl (Aa)) in (2) as an infinite dimensional nuisance parameter appearing in the 

regression intercept. The approach taken is then analogous to the treatment o f fixed effects 

in panel data regression. The estimator of d  pools the information about d  obtained within 

each (shrinking) band over which the error spectrum is effectively constant as n —► oo. We 

therefore call the new estimator a pooled log periodogram regression estimator.

The pooled estimator is shown to be consistent and asymptotically normally distributed. 

The pooled estimator has a smaller asymptotic variance than the GPH estimator, reflecting 

the greater number of periodogram ordinates used in the regression, but it also has larger 

asymptotic bias because o f the nonconstancy of f uu (A). Simulations show that in finite 

samples the pooled estimator performs substantially better than the GPH estimator when 

fuu (A) has spectral peaks near the origin. On the other hand, the pooled estimator generally 

performs worse than the GPH estimator when f utl (A) changes monotonically from A =  0 

to A =  7r, although the difference is small.

This chapter is organized as follows. The new estimator is constructed in Section 2.
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Section 3 gives assumptions and derives some preliminary asym ptotic results. Section 4 

proves consistency of the pooled estimator and derives its asym ptotic mean squared error. 

Section 5 demonstrates asym ptotic normality. Section 6  discusses the simulation results 

and gives an empirical illustration. Proofs are collected in Section 7.

2 Pooling Log Periodogram Ordinates in Regression

The idea of pooling ordinates in log periodogram regression can be explained as follows. 

First, we use an alternate form of the log periodogram representation, viz.

In { I x x  (As)) =  ln (/uu(A s) ) + l n 1 - e 'tA# - 2 d
+

=  In ( fUu {u j))  — 2d In 1 -  eiX9
J x X  ( A a ) .

which allows for periodogram ordinates A5 in the neighbourhood o f a  set of frequencies uij 

for j  =  0 ,1 , ...M  — 1 , where M  is a parameter that determines the total number of distinct 

bands.

The implied log periodogram relation is now

In ( I x x  (A,)) =  In ( fuu (u>j)) -  2d In 11 -  ea ‘ 1 +  V  (As) , A3 G B , (5)

where

and

B  =  {  ~  2J7 <  +  w }  > =  {2& ’3 =  1’ —’ Af -  1
3 1 \Aa|0 <  A3 <  J f }  , Luo= 0 , j  =  0

are the frequency bands, which are of width We compute the regressor sequence in (5) 

using 11 — e,A* |2 =  4 sin2 (4f-) and do not use the conventional replacement 11 — e,A* |2 ~  A2, 

which is appropriate only for Aa in the vicinity of the zero frequency.

We propose to estimate the parameter d  in (5) by linear regression using (L  -f 1) bands 

B o ,..., B e  where £  is a number such that L —* oo and L /M  —► 0. Thereby we remove the 

intercept in the regression by poohng observations over bands to  fit d. Write (5) as

Yaj  =  fij +  d X aj +  rjaj +  esj s =  1,..., m; j  =  0 ,1 ,. . . ,  L  (6 )
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with

Y aj  =  In ( I x x  (K ) )  , Aa € B j

X Sj  =  —2 In 11 — e iX‘ I =  — In 4sin 2 = - l n ( 2  -  2cosA s) , X 3 €  B j

Vaj =  = I n / uu(As) - l n / utl(a;y), A5 e  B j
\  Juu v^ j) j

Hj = l n { f uu(uj))  + ^(1),

where ^  (1) =  T' (1) =  —7  and 7  =  0.57721566... is Euler’s constant.

The pooled estimator d  is given by the formula

Y lj= 0  Hfj.-A.gBj} {Yaj — y . j )  (X sj  — X .j)  ^  52j= 0 (X sj ~  X  j )

5Zi=0 (A»j ~  -^ j) H{s:A.€B_,} (X sj  ~  X .j)
where

r o  =  i  E  E  ■ " < / « ( * . » ,
{s:Aj€i?j} {s:Aa€i?j}

X j  =  ^  E  * •*  =  “  E  >" [4sto2  ( t ) ]  •
c o  l  * = n .\  * \  /  J{s:A,€Bj} {j:A,eflj}

Note that the estimator d  uses data over an increasing number of frequency bands, not just 

those frequencies in B q . The estimator still uses frequencies only in the vicinity of the origin 

because m L /n  —* 0. In other words, the pooled estimator retains semiparametric nature of 

the log periodogram regression while using increasing number of bands. Subgroup means 

are subtracted in order to allow for the fact that the intercept fij may change over frequency 

bands j  — 0 ,..., L.

Combining equations (6 ) and (7) gives the estimation error

£  _  H j = 0 I Z ^ A .e B j}  T1aj { X a j  ~  X . j )  +  Y ^ =  0  ^ { a iA .g B j}  £aj ( X aj  X . j )

52j =0 Z){a:A,eB>} ( X aj  -  X . j )

The idea of pooling ordinates over the bands B j  while allowing for variation in the spec

trum across bands can be applied to other semiparametric estimators of the long memory 

parameter d. In particular, it is readily implemented in the case o f the local W hittle esti

mator suggested by KUnsch (1986) to give a  pooled W hittle estimator. Our attention in 

the present chapter, however, will be confined to the pooled log periodogram procedure.
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3 Assumptions and Asymptotic Results

To establish a limit theory for the pooled estimator, many of the results in Robinson (1995) 

and Hurvich, Deo, and Brodsky (1998) are relevant, and our approach draws substantially 

on their earlier work. We start by introducing the following assumptions.

A ssu m p tio n  1 m —► oo, n  —+ oo, ^  =  ^ 7  —> 0.

A ssu m p tio n  2 ^  +  ml” m +  —► 0.

A ssu m p tio n  3 / ' u (0) =  0, / uu (u/) >  B0 >  0, | / '„  {u)\ <  B x <  00 , |/"u (u/)| <  B 2 <  00 ,

1 fu i  M l  <  b 3 <  OO Vu; €  [0 ,7r].

3 .1  R em ark  In what follows, it will be taken as a convention that n =  2m M  holds exactly  

with both m  and M  integers (so that n  is even). The convention is convenient, but not 

essential in what follows, and M  is simply defined by the ratio M  =  ^  when n  is odd. 

Any particular choice o f m  and expansion rate for m  affect the bandwidth jy , its rate of 

contraction, and the number of bands in the regression. The rate condition in Assumption

2 controls the relative rates at which m, M , and n —*• 0 0 . Assumption 3 implies that f uu (w) 

is bounded away from zero and smooth with finite third derivative, much as in Hurvich et 

al. (1998).

3 .2  L em m a For a number £ such that £ —► 00 and £5 /M 4  —* 0, the following results hold: 

(<*) £ { S:A.6 Bo> i X *j -  x -i) 2 =  4m +  o (m ).

(b) £ ; = i  (X *J ~  x i f  =  +  o ( m ) ,

where E =  YIJLi [—J ( j  +  1) (In (j  +  1) — In j ) 2 +  lj  =  0.0803.

3 .3  L em m a For a number £ such that £ /M  —* 0,

f  V  n fY  T  ) 27T2 f"u (0) m 3£ n ( m 3£ \

j=0 {s-.x.eBj} JUUK ’ v 7
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3.4 Remarks

(a) The GPH estimator involves regression only over the band B q. In place of (8 ) it satisfies

{s:Aj€i?o}

as 771 —► oo. Roughly speaking, the denominator measures the excitation level of the re-

the regression (6 ). From (10), it is apparent that this information content is larger when 

the frequency band B q, ..., B l  is employed than when the immediate band around the zero 

frequency Bo is used. As we will see, this increase in information content reduces the 

asymptotic variance of the pooled estimator relative to that of the GPH estimator.

(b) The optimal expansion rate o f m  for the GPH estimator is known from Hurvich et 

al. (1998) to be O (ns), whereas the optimal rate for the pooled estimator is, as we will
4 2

see later, 0 (n ^ L ~ s). Thus, if optimal rates were chosen the variance gains of the pooled 

estimator would vanish as n  —♦ oo. Issues o f a joint optimal choice o f m  and L  have not 

been considered by the authors.

(c) Lemma 3.3 shows that the nonrandom bias of the pooled estimator that arises from the 

presence of the first term in the numerator of (8 ) is O when /(,„ (A) ^  0 and hence 

this bias tends to zero as n  —» oo.

d-GPH — d = (9)

The denominator of d  — d

L
( 10)

j =0 {a-.X.eBj}

is larger than the denominator of the GPH estimator

y ;  (X 3j  -  X j ) 2 =  4m  +  o (m)

gressors and indicates the information content in the regressors about the coefficient (<f) in
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4 MSE and Consistency

We start with the following theorem, which is a variant of theorem 2 in Robinson (1995).

4 .1  T h eo rem  Let Assum ption 3 hold. Then, fo r  any sequences of positive integers j  =  

j  (n ) and k =  k  (n ) such that 0  <  k <  j  <  n / 2 , as n —* oo

(а) B [ w ( X j ) w { X j )  / f x x  (Ay)] =  1 +  0  ( j ~ l Inn) ,

(б) B  [w (Aj) w  (Aj )  j f x x  (Ay)] =  O ( j -1  In n) ,

(c) E

(d) E

w  (Aj )  w  (Ak) /  (fxx (Ay) fxx (Afc) ) 1/2 

w  (Aj )  w  (Afc) /  (fxx (Ay) fxx (Afc) ) 1/2

=  O {k 1 In n) , 

=  O (A:-1  Inn) ,

where Ay =  2Trj/n and w  (A) =  (27rn) li/2 X te ltx.

Define the quantities

^ n —l ^ n —1
Ag =  , )  cos \$ t .  Cg — /— ^   ̂A[ sin \ st.

y/2 nn  "  \ l 2 irn "

and

a st =  max { |cov ( . 4 , / / ^  (A .), (A*)) | , | cov ( * . / / $  (A .) , C£/ / ^ /2  (A*)) | , 

COV ( C s / f x x  (Aa) 7 M l  f x x  (At)) | 1 j co v  { p a / f XX  (^*) » f XX  (■*«)) | }  '

Theorem 4 .1, combined with the Gaussianity o f X t, enables us to evaluate the means, 

variances, and covariances of

£'-’ = l n ( /x x (A * ,) )  “  ln ( / * x  (Aj) +  / x x  (A ,)) “  '<’(1) ’

because the distribution of the normal vector

(  A j U f x x i X j ) ) ^ 2 , C j /  ( f x x  (Aj))1̂ 2 , A k/ { f x x { Afc))1/2, Ck/  { f x x  (Afc) ) 1/2 )  

is solely determined by its covariance matrix. In particular, it follows directly from theorem

4.1 that

' ( A )  " 5 + t )- ' ( j s U - i - o f i r ) -  

-  « ( ¥ ) •
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uniformly for 1 <  t  <  s  <  n / 2 .

The following lemma is also a consequence of theorem 4.1. Because the proofs of its 

four component parts are very similar to those of lemmas 2,3,6, and 7 in Hurvich, Deo, and 

Brodsky (1998), they are omitted here.

4.2 Lemma

(a) a st =  O  ( I nn/ t ) , uniformly fo r  1 <  t <  s <  n /2 .

(b) C ov  (£sj , £tk) =  O  (a 2t) , uniformly fo r  In2 n <  t <  s  <  n / 2 .

(c) E  (e3j ) =  O  (In n / s ) , uniformly fo r  In2 n <  s <  n/2.

(d) V ar (esj) =  7T2/6  -F O  ( in n /s ) , uniformly fo r  In 2 n <  s <  n/2.

Lemma 4.2 shows that £sj,£ tk  are asymptotically mean zero and independent and iden

tically distributed for ln2 n <  s, t  <  n /2 . We now proceed to  derive asymptotic representa

tions of the bias and variances and covariances of )C{j;a,€B_,} £*i ~  ^. j )  over different

frequency bands.

4.3 Lemma (Bias) For a number £ <  M ,

i  __
£  E  (eaj) (X sj -  X j )  =  O  (In m ) .
J=1 {s:AaGSj}

4.4 Lemma (Variance and covariances between bands Bj ,  Bk, 1 < k <  j < M )

For 1 <  k <  j  <  M,

V ar Y . - T  S  ( ^ - X , ) 2 +  0 ( ! ^ ) ,
f - .  \  r r D  \  \  J  /{a:A,eBj}

and.

C ov £  e s j  ( X s j  -  X j ) , £ t k { X t k - X . k )
{ s :A .€ B j } { t:A t e B fc}

4.5 Lemma (Covariances between bands B j ,  B o ,  ! < _ ? " <  M )

Cov
. { - r A . e B j }  { t:A t e B o >  J V J J ™J
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4 .6  L em m a (A sy m p to tic  variance)

i
V ar Y .  £  j )  =

j '= 0  (a : A. S B ,}

4 .7  R em a rk  We can express d  as

d
T . U  I W b , }  1° ( I x x  (A,)) {Xsj  -  X. j )

X^=0 2{s:A.eB_,} {X 3j X' j )

I 3 { a :A .€ B j}  ~  ^  j )  H { a :A ,€ B _ ,}  ^  ( f a  (Aa)) (X 3j — X .j)

where dj  is the estimator of d obtained from using the band B j only. Lemmas 4.4, 4.5, and 

4.6 imply that the dj  are asymptotically independent. Therefore, d  is a weighted average 

of asymptotically independent component estimators dj,  and we may therefore anticipate 

that the variance of d is smaller than that of do =  dcPH-

Specifically, lemmas 3.2, 3.3, 4.3, and 4.6 yield an asymptotic representation of the mean 

squared error of d, which is given in the next theorem.

4 .8  T h eo rem  Let assumptions 1-3 hold. Then

4 .9  R em a rk s

(a) The mean squared error tends to zero a s n - * o o  and d  is consistent.

(b) Hurvich, Deo, and Brodsky (1998) derive the following formulae for the asymptotic bias 

and variance of the GPH estimator:

M S E  (d )
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V ar (So p h )  -  J £ l  +  0 ( h ) -

Compared with the GPH estimator, the pooled estimator has a larger bias but smaller 

variance. Which effect dominates in finite samples will depend on the sample size and 

the shape of the error spectrum / uu (u/). In the extreme case where the error spectrum is 

constant, t)sj =  0 , and both estimators are unbiased (the first term in the numerator of 

both (8 ) and (9) is zero).

5 Asymptotic Normality

To establish the asymptotic normality of d, we prove that the standardized quantity

™_1/2£  £  ^>3 { X s j - X . j )  (13)
j= o  {s-.x .eB j}

with L  =  O  (In M ) has a lim iting normal distribution.

The following lemma gives the basis of the limiting distribution theory. Its proof draws 

heavily on the derivations in Theorem 3 of Robinson (1995) and applies the approach 

developed in that article to  a case in which there are Ivn rather than m  observations.

5 .1  L em m a Let akn =  ak be a triangular array fo r  which

tm tm
max |at| =  O  (m ) , ^  a \  ~  m, ^  |afc|p =  O  (m ln £ ), (14)

t = l + m ° - 5+ i Jc= l+ m °'5+4

fo r  all p >  1, and let i  be a number that satisfies £ —* oo, £2 m 2 m 0  5 +A/ n2 —* 0  fo r some 

0 <  A <  6  <  0.5 and ln^ £ / m A —*■ 0 fo r  any K  >  0. Then,

tm
4 =  V  a»Cft -ijV(0,n) = JV(0,^'(l».

where

Uk =  log [(u H (Afc) ) 2 +  (^(A fc))2] - ^ ( 1 )

W ith this lemma in hand, we extract a limiting distributional result for the quantity 

(13). In particular, we have the following.
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5.2  L em m a  Let assumptions 1-3 hold and additionally require that m  =  O (n$ for  

some e >  0 and L  =  O  (In M ) . Then, we have

m ~ U 2  ^  N  ( ° - 47r2 +  / 6 ) '
i=0 {a:A.GBj}

These preliminary results lead to the asym ptotic normality of the estim ator d.

5.3  T h e o r e m  Let assumptions 1-3 hold. Moreover, if  m  =  O  ^n5 - £ j  fo r some e >  0 

and L =  O  (In M ), we have

6 Simulations and Empirical Illustration

This section reports some simulations that were conducted to compare the finite sample 

performance of the two estimators dcPH  and Spooled- Because both estimators treat ut 

nonparametrically, it seems desirable to examine their finite sample properties over models 

that allow for a variety of spectral shapes for f uu(A). With this objective in mind, we used 

the following AR(2) generating mechanism for ut

ut — aiu t- i  — a2 Ut - 2  =  £t ~  HdN  (0 ,1 ) ,

which permits a range o f spectral shapes, including some with spectral peaks away from the 

origin. We generate the process X t =  (1 — L )~ d ut by the algorithm o f Davies and Harte 

(1987).

We set m  =  n065 in the simulations. This amounts to using the frequency band 

(0 ,0.3 l 7r ) , (0, 0.227t), and (0 ,0.097r) for sample size n  =  200, 500, and 1000. We set L =  2 in 

the construction of the pooled estimator. Although the pooled estim ator requires a slightly 

stronger condition on m  for asymptotic normality than the GPH estim ator (specifically,
4 4m  =  0 (n 5_£) rather than m =  o (n s)), we use the same m for comparison because m is 

rarely chosen to  be as large as n5 in practice.
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6.1 S im ulations over th e  (ai,a2) plane

First, we report some comprehensive simulations over the (0 1 , 02 ) parameter space, so that 

the effect of spectral shape on performance can be assessed. We take the region of the (a i , 02 ) 

plane for which ut is stationary and use a grid with a step size o f 0.1 in this plane. The bias, 

variance, and mean squared error (MSE) were computed using 1,000 replications. Sample 

size and long memory parameter were chosen to be n  =  500 and d =  0.3, respectively. A 

second experiment, reported below, looks at performance for different values of n.

For the GPH estimator, we used the regressor X a — —21n(As) , instead of the exact 

regressor — In (4 sin2 (A3/2 ))  , as is common practice, and in our simulations the former 

regressor generally gave better results for the parameter values considered. The variances 

of the estimators were very similar and seemed to vary little across the different parameter 

values. Hence, most of the variation that appears in the MSE is due to differences in bias.

Figures 1 and 2 plot the MSE’s. When a \ and 02 are close to the line a\ -+- =  1,

the MSE of both estimators becomes quite large. The MSE of the GPH estimator has a 

particularly large spike when a i is large and is small. The MSE of the pooled estimator 

also has a spike, although the magnitude of the spike is substantially smaller than that of 

the MSE of the GPH estimator. The MSE of the GPH estim ator decreases monotonically 

as a i decreases, whereas the MSE of the pooled estimator has small bumps, especially when 

02 is small and negative.

To obtain a better idea of the differences between the two estimators, a contour plot of 

the MSE difference (M SE(GPH)—MSE(pooled)) is displayed in Figure 3. In general, the 

difference is small when it is negative, except in the area near the line a \ +  02 =  1- As 

expected from Figures 1 and 2, the difference is large when a \  is large and 02 is small. Figure 

4 shows a contour plot of the logarithm of the relative efficiency (=  log2 M S E  ( G P H )  — 

log2 M S E  {pooled)). The area of the (ai, 02) plane in which the MSE of the pooled estimator 

is smaller than that of the GPH estimator (i.e., the logarithm of the relative efficiency is 

greater than 0) is not very large. Because the pooled estim ator has a larger MSE than the 

GPH estimator when the MSE of both estimators is small, the magnitudes of positive and 

negative relative efficiency are roughly equal to each other.
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Figure 1: MSE of the GPH estimator (d  =  0.3, n =  500, m  =  56)

2

Figure 2: MSE of the pooled estimator (d =  0.3, n  =  500, m  =  56)
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Figure 3: M SE(G PH )-M SE(pooled) (d  =  0.3, n  =  500, m  =  56)
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Figure 4: log2 (M S E  ( GPH)  / M S E  (pooled)) (d  =  0.3, n  =  500, m  =  56)
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Figure 5 plots the spectral density of ut for some of the more important parameter 

combinations in Figures 3 and 4. The values of aj and 02 at these points are given in Table

1. At the points where the pooled estimator has a substantially smaller MSE than the GPH 

estimator, such as at B, C, and E, the spectral density has a peak near the origin. At the 

points where the spectral density has a peak away from the origin or changes monotonically, 

such as at A, D, and I, the GPH estimator has a smaller MSE than the pooled estimator. 

At the points F and L, where both estimators have quite large MSE, the spectral density 

decreases sharply from the origin. Because the slope of the periodogram around the origin 

contains the strongest signal for both the GPH estimator and the pooled estimator, this 

result is hardly surprising, and neither procedure can be expected to work well. At point 

H, where ut is a white noise, both estimators have similar MSE. The shape of the spectral 

density far away from the origin does not affect the MSE substantially, as indicated by the 

results on the points G and J.

Table 1. The values of a\ and 02 at the points A-L
A B C D E F G H I J K L

ai -0.6 0.6 1.0 -0.5 0.5 1.0 -0.5 0.0 0.5 -0.4 0.0 0.4
a2 -0.6 -0.6 -0.6 -0.3 -0.3 -0.3 0.0 0.0 0.0 0.3 0.3 0.3

In sum, the pooled estimator has the advantage of being robust to the presence of a 

peak in the error spectrum f uu (A) and produces substantial reductions in both bias and 

MSE when the peak is close to the regression frequency band. In such cases, of course, it is 

the peak in the short memory spectrum that exacerbates the bias in the GPH estimator.

6.2 D etailed  sim ulation  for several pairs o f param eter values

For several points in Figures 3 and 4, we conducted a more detailed simulation covering 

different sample sizes1. Tables 2-4 show the simulation results for parameter combinations 

G, H, and I from Table 1, for which 02 =  0 and Ut follows an AR(1) process. In general, for 

A R (I) processes with a i ^  0, dpooied (the second row) is more biased than dcPH  (the first 

row). The increase in the bias occurs because f uu (A) is monotonically increasing (decreas

ing), and the bias effect o f the nonzero slope of / uu (A) on the estimator is accumulated 

across bands in the case o f the pooled estimator dpooiedi as is apparent from the asymptotic

'W e report only the  case d =  0.3, because the results for different m em ory param eter values are very 
similar.
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Figure 5: Spectral densities for several AR(2) processes
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formula (11). The variance o f the two estimators are almost equal. MSE(dpooicd) is similar 

to MSE(dcPtf) when aj =  0, whereas the pooled estimator has a  larger MSE than dcPH  

when a i =  ±0.5. The difference in the MSE is smaller when a i is negative because the slope 

of /uu (A) changes primarily where A is far from the origin, and the effect o f the shape of 

}uu (A) far away from the origin is smaller. Thus, for A R (1) errors it appears that the GPH  

estimator is generally better than the pooled estimator in finite samples. The difference 

in the MSE is small when tl =  1000, however, because the frequency band [0, Am] becomes 

narrow relative to [0,27r].

Tables 5-7 show simulation results for the parameter combinations A, B, and C, for 

which the spectral density o f ut has a peak at the frequency Ap =  arccos |  — }  -

The values of Ap are 1.98 ( ~  0.637r), 1.16 0.37tt), and 0.84 ( ~  0.277r/) at A, B, and C,

respectively. The simulation results for these parameter combinations are very different 

from the case of AR(1) errors. Now, the performance of the estim ators depends very much 

on the location of the peak in the spectrum f uU(X) relative to  the frequency band being 

used in the regression. When the peak in the spectrum is near the frequency band [Ai, Am] , 

as it is for B and C with n =  200 and 500, the estimator dcpH  appears to be severely 

biased, and the pooled estim ator d p o o i e d  has much smaller bias than cLg p h  (see Tables 6  

and 7). On the other hand, at A, the peak in the spectrum of / uu(A) is far from the origin, 

and fu u (A) is close to constant around the origin. In this case (see Table 5), the bias of 

d - G P H  is relatively small, and d p o o i e d  has a larger bias. In all cases, although the variance 

of dpooied is smaller than that of dcPH , the difference is not substantial. In terms of MSE, 

at parameter combinations B and C and for n  =  200 and 500, MSE(dpoojcd) is decisively 

smaller than M SE(dcptf) due to  the bias reduction. However, at A, dpooied has a larger 

MSE than dcpH  because o f its larger bias. When n =  1000, the difference between the two 

estimators becomes smaller.

In the simulations above, the pooled estimator uses a  total m  (L +  1) =  3m  frequencies, 

while the GPH estimator uses m  frequencies. We examine the effects of using the wider 

frequency band on the GPH estimator and see how this affects the comparison of the two 

estimators. The third row of Tables 2-7 reports results for dcPH  (3 m ), the GPH estimator 

using 3m frequencies. Using 3m  frequencies in GPH leads to  a dramatic increase in bias
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except for the parameter combinations H (where / uu (A) is constant) and B with m  =  200 

and 500. The results in Tables 2, 4, 5, and 7 reveal that the GPH estimator based on 

the wider frequency band is very sensitive to the shape of the spectrum / uu (A) around the 

origin and is generally much inferior to the pooled estimator. On the other hand, using 

only m  frequencies, dividing the frequency band [Ai, Am] into bands and applying the pooled 

estimator does not provide a superior pooled estimator. The fourth row of Tables 2-7 shows 

results for dpooiedim), the pooled estimator that uses only m  frequencies in total and two 

blocks, each block containing [m/2] frequencies. Evidently, the increase in variance in this 

case more than offsets the reduction of bias.

In sum, the pooled estimator has advantages over the GPH estimator in finite samples, 

because the use o f a wider frequency band (m (L  4- 1 ) rather than m) makes it less sensitive 

to the presence of peaks in the underlying spectral density f uu (A ). At the same time, it 

avoids the extremely large bias that is typical of the GPH estimator when a wide frequency 

band is employed. Therefore, it provides us with an alternate way of using a wider frequency 

band in log periodogram regression and a way to use more information, making the estimator 

more robust to various shapes in the short memory spectrum. In so doing, it can lead to 

substantial bias and MSE reductions when / uu (A) has peaks that are close to the regression 

frequency band. On the other hand, it suffers from a mild bias increase when the error 

spectrum f uu{A) changes monotonically, as it does in the case of AR(1) errors.

6.3 Em pirical illustration

The methods were applied to US inflation series and stock returns. The inflation series 

constituted 624 observations of the monthly CPI inflation rate over the period 1947:1- 

1999:2; and the stock return series involved 3600 observations of the absolute value of 

returns on the daily S&P500 stock index from January 1979 to October 1992.2 The first 

panel of Figure 6  graphs each series. The second panel of Figure 6 plots cLg p h  and dpooied 

for different values of m . (Specifically, m  =  n05, .. . ,n a65 were used).

The value of the both estimator changes as m  increases, although the pooled estimator

2T he inflation series were com puted as X t  =  100A [log (x£)J , where x t is the  US m onthly C PI, over the  pe
riod from Jan u ary  1947 to  February 1999. T he stock re tu rn  series were com puted as X t =  100 |A  (log (x t ) ) | ,
where x t is the S&P 500 stock price index from January  1979 to  O ctober 1992.
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Figure 6 : Inflation rate and stock return data and estim ates of d

appears to have a less sharp peak. The estimates of the memory parameter for inflation 

are in the region (0.4,0.8), indicating marginal nonstationarity of inflation. Those for stock 

return magnitudes are around 0.3, indicating stationary long range dependence.

The first panel of Figure 7 shows the residual fractionally differenced series ut =  

(1 — L )d X t, where d  is the pooled estimate with m  =  n055. The spectral density esti

mates of ut are displayed in the second panel of Figure 7, using dcpH  and dpooied estimates 

calculated with m  =  n 0 55.

In both cases, the empirical estimates of the spectral density o f ut appear to have more 

power concentrated at higher frequencies. This is partly explained by the natural tendency 

of the GPH estimator to attribute power in the periodogram at lower frequencies to the 

long memory parameter d. The estimates of f uu (0) implied by the pooled estimator of d 

are higher than those obtained from the GPH estimator for the inflation series and lower 

for the stock return series. In other respects, the spectral densities estimates are very close.
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Figure 7: (1 — L ) d X t  and spectral density estimates

7 Appendix: Proofs 

7.1 P ro o f o f  Lem m a 3.2

(a ) j  =  0

Assumptions 1 and 2 yield

m /

£  ( * . / - * • / )  = 4 £ r
{ s :A .€ B 0 } a= 1  V

In 1 -  e iA , 1 m I \ V  In 1 — e,A* I =  4m  +  o (m ) ,m  f I ]3=1

as shown in lemma 1 of Hurvich and Beltrao (1994).

(b) 1 < j  <  e

Taylor expansion gives, as in Hurvich and Beltrao (1994)

2
1 -  eiA , =  2(1 -  cosAa) =  A” c o s fa, 0 <  <  As,

and

2 Xa]
In A, +  -  ln co s£ 3, \ a €  B j

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

129

=  In A, — £
4 cos2 Q,

0  <  Qa <  £a

=  In As +  O ( £ ) =  In A,

for a sufficiently large n, because l / M  —» 0 implies fis —► 0, and (cos2 f is) 1 = 0 (1) follows. 

Also, the order O  (j 2 /M 2) is uniform in j .

Note that
(2 j  +  1) 7T TTTTl (2 j  +  1)

U j  =
2 M TL

(using n  =  2 m M )

and it follows that

o

2M  5 J ~ 2 M
7r m 27rs (2,7 +  1) 7rm 7rm

n n n ~  n
o  —m < 2s  — m  (2j  +  1) <  m  

o  0  <  2s — 2m j  <  2 m  

o  1 <  s  — m j  <  m.

For m j  +  1 <  s, s' <  m j +  m , by the mean value theorem

In s  — In s' =  i  (s — s') s €  [s, s']

=  O (1/m j) O (m) =  O  ( 1 / i ) ,

and

It follows that

m j + m  , ...

I n s  V '  Ins =  — V  (Ins -  Ins') =  O  ( 1/ j )  ■
mj+m

TO , TO .s = m j + l  s '=mj+l

= « E
{srA.eBj}

= « E
{s:A, e f i j }

hA- = * £ uM’+o(£)

, i n s b>+o(^).
m j + m

=  4
a = m j + l 4 = m j + l
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=  4
j+ i
£

s /m = j '- f - l /m  \  s / m = j + l / m
\ A P )

4 m r —
where

ri+in
Cj  —  J  In xdx

Jj
=  [x (lnx  — l)]j-+1

=  0  +  l)(In(jr'+  1) -  1) -  J'(lnj -  1)

=  0  + 1 )  In 0  +  1 )  — J  In j  — 1 ,

Cj +  l  =  ( j  +  1) in (j  4 - 1 ) - j  In j,

which gives

f 3 2I ( ln x  — C j )  dx  

— [x ^(lnx — Cj — l )2 +  l^j

=  0  +  1) (In 0  +  1) -  C j -  l )2 +  j  +  1 -  j  (In j  -  C j  -  l )2 -  j  

=  U  +  1) j 2 U  +  1) -  In j ) 2 ~  J U  +  I )2 (In 0  +  1) -  In j ) 2 +  1 

=  - j  0  +  1) (In (j +  1) -  In j ) 2  +  1 .

Therefore,

£  £
j —1

~ 4m£jf (lni_Ci)2<te+̂ ( 0(^ )+0(^'))
=  4m £  [ - J  0  +  1) (InO +  1) -  I n i )2 +  l]  +  O  +  O  ( = £ )

e
=  4m  [—j  0  +  1) (In O' +  1) -  In j ) 2 +  lj  +  o ( m ) .

There is no explicit numerical value for the quantity 52* ( —j  (J +  1) (In (J +  1) — In j ) 2  +  1̂  

or its limit as £ —► oo. Nevertheless, the sum converges since

f 3+l  2/  (In x  — C j )  dx

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

131

<  (In ( j  +  1) — ln j )2 (by the mean value theorem)

<  1/ j 2,

which implies that YlJLi / / +1 (ln i  — cj ) 2 dx <  00. Direct calculations using Mathemat- 

ica produce the approximate numerical value Yl!j~i J 0  +  1) (In ( j -(- 1) — In j )2 4-1^ =

0.0803.

7.2 P roof o f Lem m a 3.3

For j  =  0, by lemma 1 of Hurvich, Deo, and Brodsky (1998) (hereafter HDB), we have 

Vsj { X aj -  X . j )  =  J 2  (1*  -  111 ( ° ) )  ~  *<>)
{s:A(€flo}

V -  in ,  ( X  Y  a _ 8tt2 f'fu (0 ) m 3 ( m 3 \
2 ^ In f uu (As) (X aj X j ) _  g ^  (Q) n 2  +  o ^ n2 J .

{s:A,eBb}

For j  >  1, we first collect together some useful technicalities in the following Sub-lemma.

7 .2 .1  S u b -lem m a

L f c f e i  =  ( 1 +  0  K O ) =  O K )  uniformly in j .

2 . O =  O (J t ') because j  =  o ( m ) .

3- r a i -  =  o Z ^ o j£<) =  4  ( 1 +  °  ^  uniformly in j .

First, note that 

r - ^  /  2it s  (2 j +  l ) 7r m \  2irE (*.—;> = E (— - „ )=V £  (*-0 + l/2)m)
{s:A ,€Bj} 5= m j'+ l  v 7 a = m j'+ l

2 »  ”S ± T .............................2 *  m
=  —  E  (s  -  - m / 2) = — E

a = m j'+ l fc= l

27t f m ( m + l )  m 2 \  2 i z m

~n V 2 TJ ~  ~ n ~ 2 ’

because positive and negative terms cancel out as we sum over s  — jm  from 1 to m. It 

follows that

- X j  = -I  E  =  i  E  ln (2  — 2 cosAs)
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=  — 5 2  [ln (2  —2 c o s f ) j )+  S— — ( A , - u , )  +  i  =------ ( A , -in ,)
m W>S , > L 1 - c o s in ,  2 cos As — 1

=  In (2  -  2  cos a. j )  +  smu,j— L V '  ^ +  o  |  _ L _  j
V S?JW2/

, . sina/, 7r . / I N
=  In (2  — 2 cosa/i) +   -------- >2--------h O I ) ,

J 1 — cos u ij n  \ J  /

where As G (uj ,  A,), and the term O  ( l / j 2) is uniform in j .

By Taylor expansion

/ '  (W .) /"fun ( X )
In A «  (A,) -  In /„„ (m,) +  f 2  iuj )  (A. -  in,) +  ^ ^  ^

-  in/“"(̂ )+ ^ <A* - ^ + o GiK)'
Thus, in view of Sub-lemma 7.2.1,

£  ^  (* '*  -  x >)
{s:A,6Bjy>l}

(As

x [ - ( t= - ) ( a' - s - D ^ ( ^ ) ]

* t f c S )  £ „ * - • » - ( »

=  s[aujj  V 27rV r ^  mN\ 2
V/uu (u /j)y  V1 -  coswjj V n )  ^  V 2 )

+0 ,, 5 . / '  (m?) (7 ) (n1) + ° ( w )
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=  _  ( / u u  ( y j )  \  z L ™ + o ( - L ) + o (  J l L )
\ f u u ( u j ) J  V1 -  C O S  U j J  A P  12 \ A p )  \ M * j  )
( fun (“ j ) \  (  s i n u j  \  7T2 m  f  m  \
V / u u  i ^ j )  J  V1 “  cos U j J  A P  1 2  ’’’ \ M 2j  )  '

where we use the fact that

v~> f ,  m \ 2 m ( m + l ) ( 2m  +  l )  m2 (m  + 1) m 3 m 3 „ , 2\
= ------6 ---------------------- 2-------+  — =  T 2 + ° ( m >-fc=l

Furthermore, from Sub-lemma 7.2.1 we have

( f iu  M  \  (  sin u j  \  _  2& u (0 )
\ J Z m )  -  ~ u l o f  t 1 +  ° ^ ’ » ■

Therefore.

lE E n.jix.i-xj)
j= 1 {szXt&Bj}

V uu  ( 0 ) n2 rn „  I j  ~  /  m
futi.( 0 ) A P  12

to to

fuu (0 ) m 3£
3 fuu (0 ) n 2

to \% f"Juu (0 ) m 3£
3 fuu (0 ) Tl2

2 tr2 f"Juu (0 ) m 3£

-  M A P  J  +  °  M 2 j

3 / u« (0 ) n 2 \  n2 J '

giving the required result. ■

7.3  P roof o f  T heorem  4.1

Again, it is helpful to start by collecting some useful preliminary results in the following 

Sub-lemmas.

7.3.1 Sub-Lemma

1. f * v  |D  (A) | dA =  O (In n)

2. K  (A) =  O  ((nA2) -1 )  , 0 <  |A| <  tt

3. \D (A)| <  2 jA|—1 , 0 <  |A| <  tt.

where K  (A) =  (27m )-1 | £ ? =1 ei(‘"")A| =  (27m )-1 1D  (A) |2 , D  (A) =  ^ = 1
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P r o o f  See Zygmund (1959) (p. 67 for 1, pp.89-90 for 2, pp.49-51 for 3). ■

7 .3 .2  S u b -L em m a

For some C  <  oo and for A € [—tt, 0) U (0 ,7r],

1. | / x x ( A ) |< C |A |- m

2 - [ f x x W r ^ C W ^

3- l / ^ x W I ^ C I A r 2* - 1 .

P r o o f  First, the inequality \x/2\ <  |sinx| <  |x| for x  6  [—x /2 , 7t / 2] implies that, for both 

positive and negative d, jsin2 (A /2)|~d <  Ci  |A|~2<* holds for A € [—tt, 0)U (0, tt] and for some 

Ci  <  oo. It follows that

| / x x  (A)| =  |4sin2 (A /2 ) |-d | / utl( A ) |< 4 - rfC i|A |-M sup \fm  (A)| <  C  [A[~2a,
Ae(—ir,jr)

l / x x  (A) |_1 =  |4sin 2 (A /2)|d | / utl (A)|—1 <  AdC \ |A|2d sup \fuu (A)l" 1 <  C  |A|M ,
Ae(—ir,ir)

because s u p ^ . , ^ )  |f uu (A)| <  oo and infA€(_fl.)ff) |f Uu (A)| >  0. The bound for \f'x x  (A)| 

uses the fact that supA6(_fl. „.) | f'uu (A)| <  oo and then

| / x x  (A) |

<  |4 - d ( - d )  (sin2 (A/2)) ̂ _1 sin (A/2) cos (A /2 )/„„ (A) | +  |(4 sin 2 (X/2) )~d f'uu (A)|

< C2 |sin(A/2)r“ ~l + C 3 |A|-2rf < C |A |-2d_1 • ■

7.3.3 Sub-Lemma

For 0 <  A +  \ j  <  2tt and 0 < A, Ay <  7r,

|A — Ay| \D  (A +  Aj)| <  2, (15)
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P r o o f  Because |D (A )| =  \D(2ir  — A)| for tt <  A <  2 ir, and in view of Sub lemma 7.3.1

(3),

|A — Aj| \D(X +  Ay)|

< 2^— 0 <  A +  Ay <  t t  
-  A +  Ay 3

n |A — A,| % %
<  2 — ! <  A +  Xi  <2ir — A — Ay

and

|A — A y |  _  ( A  Aj )  ^
T + A 7  “  2  Ay +  (A — Ay)  -  • A - Aj

_  (* t_- *)_ A < A ; .
2 A  +  (A j  -  A)  

( A - A y )  
2 A  +  ( A  - 

(Aj  — A )

jA Aj| _   (A Aj )   ^  \  >  A-
2ir — X — Ay 27r — 2A +  (A — Ay) ~  ' ~  3

< 1 .  A  <  A ,
2 t t  -  2 A j  +  ( A j  -  A)

7 .3 .4  Sub-L em m a

If A j  <  Xj +  \ < 2 i r  — K2 Ay for k \, «2 >  0, sup Xj | D  (Xj +  A )  | <  oo.

If Ki Xj  < Xj  — A < 2ir — K^Xj  for k.\, K2  >  0, sup Xj  \ D ( Xj  — A ) |  <  oo.

P ro o f
2 A  2

Xj  | D (Xj  +  A )  [ <  —— <  — ! Ki Xj  <  Xj  +  A  <  7r 
Aj  "I- A

2 A  2
Xj  | D (Xj  -+- A)  | <  —------- -------- r  <   , 7T <  Ay +  A  <  27T — K2Aj

— \ j  — A K2

similarly for Ay |D ( Xj  — A ) | .  ■

W ith these technicahties in hand, the proof of theorem 4 . 1  is almost identical to that 

in Robinson (1995). The main difference is that f x x  ( A )  is bounded by | A | - 2 d  over the full 

range o f A,  and the evaluation of | . D ( A ) |  becomes complicated because Ay is not restricted 

to a neighborhood of the origin. We proceed with each part in turn.

7.3 .5  P r o o f o f  (a)

We start by showing

E [ w ( X j ) w ( X j ) } - f x x  ( A y )  =  f  { f x x  ( A )  -  f x x  ( A y ) } # ( A  -  A y )  dX =  0  ( j ~ l X~2d \ n n )  .
J  —1T
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where K  (A) =  (27m) 1 |5Z"=i e*  ̂ a Â| is Fejer’s kernel. By sub-lemmas 7.3.1 and

7.3.2,

f  < I  max \ f x x W \ } T  | A - A y | t f ( A - A y ) d A
| - /A j/21 l.A ,-/2 < A < ir J  7 Aj /2

=  O  ^ - “ n - 1 j T   ̂ |D  (A -  Ay)| d x j  , 

because A — Ay 6  ( —A y /2 ,7r — Ay) C [—7r, 7r]

=  O ( x j ' - ^ n - 1 J *  \ D ( X ) \ d \ j  

=  O  ^AJ1- 2dn _1 In n ) =  O ( j ~ 1XJ2d In n ) .

The symmetry of f x x  (A) and sub-lemma 7.3.3 (applicable since 0 <  A +  Ay <  2ir ) yields 

—A>/2

/: =  r  { / * x ( A ) - / j c x ( A y ) } A - ( A  +  Ay)dA 
\ J X j /  2

<  {  max \ f x x  W \ )  T  |A — Ay j K { \  +  Ay) dA 
( A j /2 < A < 7 t ‘ ' J  J X j l 2

=  O  ( {  m ax l / i x  ( A ) |}  n~l f  |A -  A,| |D (A +  A ,) |2 iA  )
\  U ; , / 2 < A < j r  1 J  JA j /2  /

=  o( {  max | / x x  (A)| 1 n_1 f* \D  (A +  Ay)| dA J
y  LAj /2 < A < jt J  y A j/ 2  /

=  O  ^A“ 1- 2dn_1 In n ) =  O ( j ~ 1X j 2dl n n j  .

For the remaining part, as in Robinson (1995),

I/:Aj/2
A j/2

<  max 
|A|<A,-

ax K  (X — Ay) f  ( l / x x ( A ) |  +  | / x x  (A y) |}dA  
V 2 7-A_,/2

=  O ( n - ' A - - M) -  O ( r ‘A -M)  ■

Finally, by sub-lemma 7.3.2,

E  [w (Ay) u; (Ay) / / x x  (Ay)] =  1 +  0  ( r 1 ln n A -^ /Z x x  (Ay)) =  1 +  0  ( j ~ l I n n ) . 

7 .3 .6  P r o o f  o f  (b)

By Robinson (1995), we have

E  [w ( Ay )  w  ( A y ) ]  =  J  { f x x  ( A )  -  f x x  ( A y ) }  E j - j  ( A )  dX,  (17)

( 16)
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for 0 <  k <  j  <  n /2 , where Ejk (A) =  ( 2 v n ) ~ 1 D  (Xj  — X) D  (X — Afc). The calculations 

are similar to those given before, but we have to check the range of integration for each 

subinterval.

r  =  r  (2 n n ) - l { f x x ( X ) - f x x (Xj ) } D ( X j - X ) D ( X  +  Xj )dX 
\JXj/2 [V A j/2

< (  max \ f fx x W \ } & ™ r l T  |Aj — A| \D (Xj  — A)| |£>(A +  \ j ) \ dX
( \ j /2< \< ir  J JXj/2

=  O  ^AJ1- 2^ - 1 j T  2 ID  (A +  Xj)\  dX*J 

=  O  ^A“ 1- 2dn “ l Inn) =  O  ^j~1A“ 2d lnn^ ,

because —7r < — ir +  Xj  <  Xj  — A <  A y / 2  <  it. Similarly,

r - V  2
dX\ [  3 { f x x  (A) — f x x  (Ay)} (27rn)_1 D  ( Xj  — X) D ( X  +  Xj )

\J — IT

=  r  { f x x  (A) — f x x  (Ay)} (27rn)-1  D  (Ay — A) D  (A +  Xj )  dX  
\ J x , / 2

=  O ^ A T "  I n n ) .

For the remaining part, X j / 2  <  Xj  — X <  3Ay/2 < 2 n  — X j / 2  and sub-lemma 7.3.4 yield

r V 2  { f x x  (A) -  f x x  (Aj ) }  E j , - j  (A) dA 
J - X j / 2

=  O (  m ax |E j , - j  (A)| {| f x x  (A)| +  | f x x  (Ay)|} d x )\JA|<Ay/2 J Q  J

=  O  ( n - l X J 2A } -2* )  =  O  ( r 1 A -2d)  •

7.3 .7  P roof o f (c)

Similar to Robinson (1995), we expand the integral as follows, for 0 <  k <  j  <  n /2 ,

E  [h i  (A,) TO (A*)] =  r  f x x W E j t { \ ) d \

{ f x x  (A) f x x  ( X j ) }E j k (X)dX(A>+Afc)/2
/■(Aj+Afc)/ 2

+  /  { / x x  (A) -  / x x  (Afc)}  £ y fc (A) dAJ Afc/2
/■(Aj+Afc)/ 2

-  { / x x  (Ay) -  f x x  (A*)} /  £yfc (A) dA/  Afc/2
/*Afc/2

+  J  { f x x  (A) — / x x  (Ay)} £yfc (A) dA.

( 1 8 )

( 1 9 )

(20) 

(21)
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First, because —7r <  Xj — tt <  Xj — A <  (Aj  — Afc) /2  <  7r, ( 1 8 )  is bounded by

{  ™  I f c W l l ^ r  |A, -  A| |0 (A j  -  A)| !£►(> -  A*)|
l(A ,+ A fc)/2 < A < ir J  7 (  A j+ A *)/2

=  L  l A x W l j n ' 1 f  |£ > (A -A t)|d A
L(A j+A fc)/2<A <5r J J ( \ j + \ k ) / 2

=  O ^AJ1- 2dn -1  lnn^

=  O ( j _ 1A“ 2rf In n j

=  d f r ' A j V l n ^ j )

=  O ^ A ^ A ^ l n n ) .

Next, when fc >  j / 2 ,  ( 1 9 )  is bounded by,

r  ^ /•( A>+Afc)/2
I max w l f e W |  n - 1 /  |A -  Afc| |£> (Aj -  A)| \D (A -  Afc)|
L A fc/2<A<(Aj +Afc)/2 J  J \ k / 2

f  1 /•(A>+Afc) /2
=  < max \ f x x  (A)| f n ~ l I  |D (A j—A)|dA

\A fc/2<A <(A j-f-A it)/2  ' J X k / 2  ]

=  O (^\^1~2dn ~ 1 lnn^

=  O ^ A j ^ l n n Q )  ^

=  O f f c - U - ^ A ^ ln n ) ,

because - i r  <  - A fc/2  < A -  Ak < (Xj  -  Xk ) /2  <  1r, and, when k  <  j / 2 ,  by

r  1 /■( Aj+Afc) /2
•I max I f x x  (A) | +  | f x x  (Afc)| > I \Ejk  (A)|dA
L Afc/2<A<Aj J J  Afc/2

( /  \  , r(A ,+ A fc) /2  \
=  o U x j ^  +  X ^ U - k ) - 1 2 |£> (A -A fc)|d A j

=  O ^ A j ^ l n n )  ,

because 0 <  ( Xj  — Xk) / 2  <  Xj  ~  X <  Xj  <  tt.

Similarly, (20) is bounded by

(A, -  At) i  max | / i x  (A)| /  (A)| d \
J JXig/2
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t  r(A>+Afc) /2 \
u  -  k ) - 1 J  /2 | D  (A -  Afc)| d \ \

=  O  ( a ^ 1- ^ ' 1 In n j = 0  ( k - 1 X j dXj/d In n )  . 

when fc >  j / 2 , and by

, /-(Aj+AO/2
{ |/x x (A y ) | +  | / x x ( A * ) |} 0 ' - * ) ' 1 /  |£ > (A -A fc)|dA" Afc/2

=  O ^ A - ^  +  A ^ O - ^ - ^ J D C A ) ! ^

=  o ( f c _ 1A -rfA ^ ln n )  .

when A: <  j / 2 .

Finally, (21) is calculated by dividing the interval into [—tt, —X j / 2 ] , [—Ay/2, —Ajt/2] ,and

[—Ajt/2 , Afc/2]. First, for the integral on [—7r, — Xj/2],  we use \ D ( —A)| =  |Z) (A)| and sub

lemma 7.3.3 to derive

f  X , / 2  (27m )-1 { f x x  (A) -  f x x  (Ay)} D  (Xj -  X) D  (A -  Xk) dX
J  — TT

<  [ *  (27m)"1 { f x x  (A) -  f x x  (A ,)}  |D  (Ay +  A)| \D (A +  Afc)| dA
J  Xj/2

=  o( {  m a x  \ f x x W \ ]  T  n - 1 | A - A y | | D ( A y  +  A )| |Z )(A  +  Aifc) |d A )
^  lA ,/2 < A < jr  J JXjI2 )

=  O  ^A- 1” 2^ - 1 j T   ̂ | D  (A +  A*)| d x j

=  O  ^A- 1-2^ -1  lnn^ =  O  ^fc-1A jdÂ 'd ln n j  .

For the integral on [—Afc/2, Afc/2], note that both Ay {X> (Ay — A)| and A* |.D(A* — A)| are 

bounded (see sub-Lemma 7.3.4) because Ay/2 <  Ay—A <  27r—Ay/2 and Xk/ 2  <  Afc—A <  2n— 

Afc/2, and then

rAfc/2/*fc/<«
(27m )-1 { f x x  (A) -  f x x  (Ay)} |D  (Ay — A)| \D (A — A*)| dA (23)

-Afc/ 2

/ Afc/2
(27m )-1 { f x x  (A) -  f x x  (Ay)} |D  (Ay -  A)11D  (Xk -  X)\dX

•Afc/ 2

=  o j A /2 ( l / x x  (A)| +  l / x x  (Ay)|}dA^

= ° ( ^ ( A‘' “ + V “ A‘) )
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=  O ( n - l X f l \ Z M +  n - V - " )

=  O ( k - ' X j ' X l - 2* +  n - l AJ1_2d^

=  O ( k ~ l XJdX t d (  ̂  +  n ^ A j 1- 2̂  =  O  ( k - l X j dX^d \nn^ .

In evaluating the integral on [—Xj/2,  — A*/2] , we use sub-lemma 7.3.4 and Xj <  Xj +  X <  

2tt — Xj/2  for Afc/2 <  A <  A j/2, giving

r - ^ k / 2
/  (27m )-1 { f x x  (A) -  f x x  (Aj)} D  {Xj -  X) D  (X -  Xk) dX

J - \ j / 2

<  f X l / 2  (27m )-1 { f x x  (A) -  f x x  (A,)} |D {Xj +  A)| \D (A +  A*)| dA
•/A t/2

=  o f  max \ f x x W \  f Xl/2 n - l \D{Xj  +  X)\ \ D{X +  Xk) \ d x ]  (24)
yAfc/2<A<A^ J  ̂ k / 2 J

-  o ( ( A -  +  A J * ) ^ )

=  O ^n- 1A j1Â '2dInn +  n ~ 1A -1- 2<ilnn^ =  O ^fc-1A~<iA jd Inn^ .

7.3 .8  P roof o f  (d)

E  [w  (Aj) w  (A*)] =  J  { f x x  (A) -  f x x  (A,-)} Ejt- k (A) dA

=  J "  (27m )-1 { f x x  (A) -  f x x  (Aj)} D  {Xj -  A) D  (A +  Xk) dX 

The evaluations are similar to those in the proof of (c). In particular,

(27m )-1 { f x x  (A) -  f x x  (Aj)} D  (Aj — A) D  (A +  A*) dA
J  Xj/2

=  o f  max \ f x x W \ n ~ 1 T  |£> (A-F A*)| dA )
\ \ j / 2 < \ < *  J  Aj /2  J

=  O  ( x ~ l ~2dn ~ l \nn)j 

=  o ( k - l X~dX^d lnn^  ,

because — 7r <  A j — 7r <  A j — A <  A j/2 <  7r. Next,

r -A > /2J  3 { 2 * n ) - l { f x x W - f x x { X j ) } D { X j - X ) D { X  +  Xk ) d X

<  { 2 Tr n) - l { f x x W - f x x { * j ) } \ D { X j  +  X ) \ \ D { X - X k ) \ d X
J \ j /  2
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=  | /x x ( A ) |n  1 |-D (A -A *)|dA  J
\ \ j /2 < \< *  JXj/2 J

=  O  ^A“ 1_2dn _1 lnn^

=  O  ( k ~ l X~d X^d \n n j  ,

by 0 <  Aj +  A <  27r and sub-lemma 7.3.3. The same argument as used in (24) yields

r - A fc/2
(2 7 m )  { f x x  (A) -  f x x  (Ay)} D  (Aj -  A) D  (A 4- X k ) dA

-a3/2

<  f  ( 2 7 rn ) - 1  { f x x  (A) — f x x  (Aj)} \ D{ Xj  +  A)| |£>(A — At)|dA
J K / 2

=  o f  m a x  | / a : x ( A ) |  / A , / 2 n - 1 |Z ? (A j  +  A ) | | £ > ( A - A fc) | d A )  yAfc/2<A<Aj 7Afc/2 /

=  O +  A -“ )  =  O ( k - 'X ^ X ^ ln n )  .

Further, the same argument as in (23) yields

rAfc/2

-Afc/2

/ *kl*
(27m )-1 { f x x  (A) -  / x x  (Aj)} D  (Xj - X ) D ( X  +  Xk) d \

•Afc/2

=  o ( l / x x  (A)| + l / x x  (Aj)j} dA^

=  O  ( k - 1XJdX^d l n n )  .

Finally,

f  3 (27m )-1 { / x x  (A) -  f x x  (Aj)} D  (Xj  -  A) D  (A 4 - Afc) dA
•/Afc/2

=  0 (  max | / x x  (A)| f  n _1 j£> (Aj -  A)| |D  (A +  A*)| dA
yAfc/2<A<Aj /Afc/2 j

=  °  (  ( Afc M +  Aj"2d)  =  O (fc_1 Aj“dA ^  In n ) ,

by 0 <  Aj/2 <  Aj — A <  7r and sub-lemma 7.3.4.

7.4 P roof o f  Lemma 4.3

The following elementary result is useful.
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7.4.1 Sub-Lemma

1. In M  =  O  ( ln m ) ,

2. Inn =  O  ( ln m ) ,

3. In-1  n  =  O  (In-1  m )

P r o o f  n =  2m M  and M / m  —► 0 implies

In M  =  O (ln m ),

in n  =  ln 2-t-ln m  +  lnA f =  0 ( l n m ) , 

ln m  lnm
Inn ln2 +  lnm  +  lnA f

From the proof of lemma 3.3, we have

=  0 (1).

X a j - X . j  =  0 ( l / j ) ,

uniformly in 1 <  j  <  M .  Also, E { e aj ) = O  (In n /s) uniformly for m  <  s <  2 /n  because 

In2 n =  o (m). It follows that

£  *  <««> ( * „  -  x , )  =  o  f i  £ "  * ? )  -  o  ( * ? ) ,
{ s :A .e B j}  \  s = m j+ l  J

because 1 /s  =  0 ( l / m j )  in {s  : Xa €  Bj} .  Therefore, 

e I t
£  £  E  (ev ) -  X .; ) =  0  ( £  ! ^  I =  O (In n
;=1 \J = l J J

) — O  (In m ) .

7.5 P roof o f  L em m a 4 .4

Var(e3y) =  7t2/ 6 + 0  (In n / s )  and Cov(£aj,e tk) =  O  (In2 n / t 2) uniformly for m <  t <  s <  n / 2  

because In2 n  =  o (m) . Hence

Var £  e „  { X „  -  X j )

m j+ m  m j+ m

=  5 3  ~  X . j )  Var (eaj )  +  2 ^ 3  5 3  ( X aj  — X . j )  ( X tj  — X. j )  cov (ea
{s:A ,€Bj} t= m j+ 1 s= t+ 1
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, — 2 ( n2  /  In n  \  \  /  1 m̂ n m̂ n in 2 n= E  ( ^ - ^ )  (T +0(—j j +0h5 S  E  —
{ s :* .e B j}  V V 7  7  \ 7  t= m j+ l  a = t+ l

2  /  , m j+ m  . \  /  m j+n

- T E  + E  Tt) +0(? E
{a:A,eBj} \ J  a= m j'+ l /  y -7 £=mjH

7r2 r-«  , — >2 ^  / ln r c \  _ /  1 m ln 2 n \
= + 0 ( l - ) + 0 ( ? — )

= ?  E  (^ -T ^  + O ^ )
{«:A.€B>} \  J /

= T E  ( ^ - ^ ) 2 + o(Stt).
{a:A.eB,} \  J /

because 1/ s  =  O (1/m j)  and ^ S + i  £  ~  -C C T  % =  5 ^ * 7  “  =  °  (V™7')-

For the covariance, we have for j  >  k

m j+ m  , om in n

Cov X  e aj  { X s j  -  X . j )  , X  e *  ( x ffc -  X . k)
_{a:A,eBj} {£:At€B*.}

=  E  S  ( * * ; - X ; ) ( X tifc-X jO  Cov (£„-,£*)
{siAjSBj } {£:At€Bfc}

, 2

E  E  o & M V )
{aiA.eBjlOrAteBfc} W 7 X 7

m j+ m  m k+m  , 2in 71

7.6 P ro o f o f  Lem ma 4.5

Cov

=  Cov

X  £ai (*« ; -  X .,)  , X  ££0 (*£0  -  * . 0)
{j:Aj€0 j} {^A(€^o}

In6 nX £ * ; ( X s j  -  X . j ) , X e*o ( X t o  -  X . o )
{s:A ,€B j  } £=1

+Cov X £ s j  (xaj -  X . j ) , X ô(Xto-X.o)
{a:A .eB j} £=ln6 n + l
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First,

Cov

<  Var

In6 1
5 3  e s j  ( X s j  -  X . j )  , 5 3  et0 ( X t0 -  X . 0 )

1=1

£  ^ ( X . j - X . j )
K{s:X.eBj}

1/2 In6 n
V a r  [ ^ 2 e to ( X t o - X . o )

t=i

_  Q (  V™ In7In m \
j ) ’

because
^ln6 n

V ar I 5 3  £tc> ( X t 0  ~ X  o) I =  O  (In14 m ) »
t=i

by HDB p.25, and as shown in the proof of lemma 4.3,

V a r f  E  **i ( X . j  -  =  £  £  ( X . j - X . , ) 2 + o ( ^
\ { 5:A .eBJ > /  { j:A ,6B j}  V

-  T  E
{a:A .€B;} KJ '  W  /

■ » ( ? ) •

Next,

Cov 53 £sj {xsj -  x.j), 53 £t° (̂ to - ■̂•°)
{s:A,eB>} t= ln6 n + l

=  5 3  5 3  ( x s j - x . j ) ( x t o - X . o ) C o v ( e 3j , £ to)
{a:A ,eBj} i= ln 6 n +1

, m  m j+ m  , o

=  o i —  £  £  ^7 “  "  t 2t= ln 6 n + 1  s = m j+ l

= o lnm
r  £

m ln 2 n

t=ln® n + 1

\  j  In n J  \ j \ n 3m j

b y  E ^ l n 6 n+1 V  ~  Jin® n+1 £  =  ln ^ n T l ~ m = °  ’
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7.7 P roof o f  Lemma 4.6

Var[X^=o Yi{s:X.eB3} £sj {Xsj  — X / ) ]  can be decomposed into the following parts:

Var 53  5 3  £aj (x sj  x . j )
J = 0 {s:X ,e B j}

=  ^ Var
i=o

53 x._,)
SBj}

-53Cov
j#*

5 2  ea j { X a j - X . j ) ,  5 3  ( X *  -  X . fc)

=  5 3  Var
i=o

5 3  x . j )
_{s:A ,€B j}

+ 2  5 3  ^OV
7=1

5 3  5 3  e t0  ( X t0 -  X . o )
{ s:A .eB j}  {«:At€Bo}

+2E E Cov
* r= l

53 e 3j ( X a j - X . j ) ,  53 e t k { X t k - X . k )
[ s :X ,e B j}  {t:Af £Bfc}

By theorem 1 of HDB, 

Var

For the remaining parts,

5 3  e ,o  {Xso -  * o )  
{ j:A ,6B o}

47r2771
+  o ( m ) .

5 3  Var
7 = i

E
{s :A ,6B j }

= e (t E
7 = 1  \  { j :A ,e B ;}  v

7r2
=  — 4mH +  o (m)  +  O (In2 m )

7T2 _
=  — Am=. +  o ( m) ,

6

E C o v
7 = 1

5 3  £aj (X 3j — X .j) , 5 3  £to (Xtf) — X .0)
{ « :A .€ B ,}  {t:A e€B0 }

=  O (y/rn In7 m  In M )  +  O  ^ ^ =  °  (m ) ■
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and

k=l j=k+ 1
£*i (X *i ~  X -i) ’ £  £‘* (X*  ~ X  k)

{a:A,eSj} {t:At6i3fc}

“  E E 0 ( !$ i ) = i : 0 ( !^ l ^ ) = 0 ( t a 3 ™ ) = o ( m ) .
fc=l j=fc+l '  J '  k=l V y

7.8 P ro o f o f  Theorem  4.8

Recall

d  _  5 2 j= a  H { > :A .e flj}  V aj ( X s 3 ~  ^  +  H y = 0  ST{a:A ,€gj>  g*-? ( ^ J  X -j)

By lemma 8  o f HDB,

( £  ea0 (A:io - X . o ) ]  = 0 (ln3 m ).

Using this result and lemmas 3.2, 3.3, 4.3 and 4.6, we obtain

2it2 /".,CO) m3L i _ m3L \  , o . _ .
3 v^*2 /  O  (In3 m )  + Q ( Inm)
4 m ( l  +  H ) + o ( m )  4 m ( l  +  E ) + o ( m )( ! - d )  =

tt2 /uu (0) m 2L  t  ̂ ^ m 2£
6 (1 +  E ) (0 ) n 2 

Var  (dtj =  [4m ( 1 -F E) +  o (m )]_2 (1 +  E) -F o (m )j

7T2
 1"24(1 -F E) m  

For the mean squared error, we have

° ( ™ ) -

M S E f d )  = fr  [°|̂  + ■> ( f̂) + O  (—) VW  \  6 ( 1 +  s ) / utl(0) n2 \  n2 J \  m J J
7T

—  F
24 ( l - h E ) m ° ( S )

36(1  

+o

(0) / n4 24 (1 +  E) m

36(1 

+o

1 4 )  + ° ( ^ )  ( ^ )  + ° ( ^ ) + ° ( ^ )

l +  S)2 l / . . ( 0 ) /  »4 24(1 +  E)m
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7.9 P roof o f  L em m a 5.1

First, we modify the propositions in Theorem 2 of Robinson (1995, p .1056). The assump

tions / ' u (0) =  0 and | ( u ; ) |  <  B 2 <  oo imply a  =  2. The univariate model in our case 

implies there is no 0  here. Therefore, (4.2) on p. 1060 in Robinson changes to

P

and (a)-(d) in his Theorem 2 become

where

(a') E  [t; (Aj) U(Aj)] =  i + o j ^  +  ^ j  

(&') E  [v (Xj)v  (Aj)] =  C > ( ^ )

(c') E [ v ( X j ) V ( \ k)\ =  j > k

(<?) E [ v ( X j ) v ( A k)J =  j > k

\ k =  2irk/n, v ( \ ) = w  (A) /  ( c ^ 2 X ' d)  , w  (A) =  (2trn) ' 1/ 2 X teitX.

In the following, we repeat Robinson’s argument (1995, pp. 1067-70) with corresponding 

modifications, although we try to keep the derivations here as self-contained as possible. 

Write Xk =  'm~1 2̂ akUk. Fix an integer N . Then, E  (52k Xk)N is a sum of finitely many 

terms of the form _ _ fJL \
(25)

ki kx \t= l /
where N kl, ..., N kf( are all positive and sum to N  and 1 <  K  <  N.  Fix such a K  and 

N kl, ..., N kf(. Introduce the 2—vector =  (vR (Xk) , v 1 (Ak))' and 2K  x 1 vector v* =  

( y kl i •••) which is normally distributed with zero mean.

Theorem 2 of Robinson (1995) implies that

E (v jv ! )  =  R  +  o ( ^ - + ( i J j ,  j  =  k,

-  ° ( x ) -  i>k-
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as n —> oo. It follows that, E* =  E{y*v*') satisfies

In £m
E* — Ik  R  4- (26)

as n —► oo.

For n sufficiently large, ^  =  E*_1 exists by (26). Denote by the (z',j) th 2 x 2 

submatrix of and write

" * u  0
*  =

0 * K K

if! =z\f> - t y .

It follows that

=  IK ® R ~ l -+- o , $  =  o as n  —» oo. (27)

Now denote by y?p the density function of a p-dimensional standard normal variate. Then

(25) is

e  ■ • e  i*ii/2 /  f n  (*i / v )
kx kK J \ i= l  /

for n sufficiently large. Consider

E - £ i * i ,/2n {  /  x j s ( * i ? * ) * * }
Jfc, fc*- i= l J

(28)

(29)
fci kK

The difference between (28) and (29) is

e  • • ■ e  /  ( n  *£*■) (*i /v ) {<=* (-r"**') -!}*•• (3°)

For any positive integer r, the mean value theorem indicates that eu — £]t=o UV^-| ^  

\u\r e ^ / r \ ,  for all u. For all e  >  0 there exists Ce <  oo such that |u |r <  C£e|u| for all u. 

Following (27), choose n  so large that j|^|| <  e, where ||-|| is the Euclidean norm, that 

is, exp |t/*'Wt/*|) <  exp j|t/*||2  ̂ . Again using (27), \v*,'l!v*\ =  o ||u*||2)

uniformly in v*. Thus

r_1
exp ( - 5« ' * « •)  -  g  jj-

as n —► oo, uniformly in v*. Thus the difference between (30) and

E - ' - E l ^ / f n ^ l ^ K ^ O r ^ - ^ i r ^ '  (31)ki kK J \ i= l  /  t=l
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o ^ rn  r/2 rA 5 3  ' 5 3  l^ !1/2 / i l \x ki* exP { ~ 5 t,’/ ( *  "  eIiK )  u* |  d l’*^ • (32)

In view of (26), |^ | =  0 ( 1 ) ,  while ^u" ^  — e l 2K^ v* >  5 »7 ||u*|j2 for some tj >  0. Because 

llXfcll <  m - 1 / 2 |a t| ||C/lt||, we deduce from the finiteness of the moments o f all orders of 

the log of a chi-squared variate that (32) is o (\nK t  • m K ~N/2~r/ 2~r^ )  —► 0 on choosing 

r  =  max (2K  — N , 1).

Now (31) makes a contribution only when such r  >  2, which occurs only when 2K  — N  >

2. Let D  be the number of which equal 1. Clearly D  > 2 K  — N , that is, D  >  t  for 

t  =  1,..., r — 1 =  2K  — N  — 1 in (31). Note that is bilinear in the v and for each

t =  1, . .. ,r — 1, hence (v^ tyv* ) 1 cannot involve more than t  of the v^ . The corresponding 

t or fewer ki can overlap with the D ki for which =  1, but because D  >  r — 1, the

(fci,..., kK, t / t h  summand in (31) can be written

n  ( /  x * v 2  ( * « !< )  dv*<) (s3>

x j  ( l / 2 v  <tv ) /  j j  X i* 'V 2 ( K ^ h )  d7’i . )  ■ (r!4>
J  \ i = D - t + l  /

From (27),

=  ^2 ( ^ _ i/2 ^ )  ( J +  0  (m ~ 1/2_A)  | K | | 2)  , (35)

uniformly in and f  XkP2 dv£ =  0. For all positive p and q, uniformly in fc,

K I I V 2 ( / 2- 1/ 2^ ) ^ = 0 (|afc|P).

Thus (33) is o n i^ i*  lafcj) an<l (3^) ^

o 7̂72~£-^ -£))/2-tA n ^ o - t + i  follows from the third part of (14) that (31) is

o (ln^  t  ■ m K ~N/2 - D/2-& D') _► o as n —» oo. Thus, we have shown that (30) —► 0 as n —» oo. 

Now from (27), |^ | =  |f2|-/C +  o (m ~1/,2_A) and

\R\~m  j  x£**¥>j ( s i i X )  * 4 , =/*h'*‘) ( i  +  «(>"*1/s‘ 4 ) ) .

where =  \R \ ~ ^ 2 J { R ~ ^ 2 v]t) dv%. The difference between (29) and

E - E n ^  <*>
fcl * K  i=  1

/
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is readily seen to be o (ln K i  ■ m K Nl 2  (1/2) max(i,z>) Aj u ^ g  (35 ). and using K  — N /2  

D /2  <  0 when D  >  1 and K  <  N /2  when D  =  0. However, (36) is

e - e i ifci kK «= 1

Therefore, we have shown that the moments of 'jTtk \k  differ negligibly from those o f the 

variate m - 1 / 2 a.kWk, which converges in distribution to  N  (0 ,41' (1)) upon applying (14), 

W k ~  iid  (0, i/' ( 1)) and the Lindeberg-Feller CLT. ■

7.10 P roo f o f  Lem m a 5.2

We adopt the argument from HDB, theorem 2. Let

L

m - I/2 £  5 Z  £‘i  (X >i -  X -i) = T l + T 2  +  T3, 
j = 0

where

 ̂ In8 m

=  ^  £ * • » ( * « > - - * • ■ > ) '
5 = 1

m 0.5+« ^

=  ^ 172  £  ^ ( X a - X . o ) ,
.«=l+ln8 m

, ™ i L  __

=  ^ 1 7 5  £  £* ( J[- - I * ) t 3 £  £  c - A X ' j - x . , ) ,
,=l+m »-5+«

where 0 <  6  <  0.5. Note that the condition required for theorem 2 of HDB, i.e., m  =  

o (n4/ 5) , is satisfied by our assumption. HDB show that T\  =  op (1) and T2 =  op ( 1) .

We now prove that T3 is asymptotically normal. Let

Ua =  In I , -  In f uu (0) -  ijf (1) +  2d In Aa,

as defined in Equation (2,4) of Robinson (1995). Then we have

" * = + t o  { o t }  -  '

where es =  es - (we drop the second subscript of e3j  )■ Hence,

T 2 =  T31 +  T32 +  T 33 ,
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where

i ™ i L __

r« = 1̂75 E  ^ - * . ° )  + ̂ E  E v* (*«-*■*).
i = l + m ° - 5+<  J — 1 { ^ A . e f i , }

1
T 3 2  =

2d
E 3 3  = £  l n { H ^ E < r * M } (x ^ - X . 0)

, _o .s-w s I J™ l / 2 s = l + m 0 5 + <

L
2 d  ^  f  |1 -  e x p (—iAs) n  , y  .

I  * -------- } IX* - x«) ■
HDB show that the first term of T& is o ( l )  and in { / uu (A,) / f uu (0)} =  O  (s2/n 2) uniformly 

for 1 <  s <  m  In M.  Hence the second term is, by s  =  O  (vnj) ,

O fmi/2£  51 n2(X»J -  ° ( mi/25I 5Z n2j]
\  i = l  { s r A .G B j}  /  \  J = l { a : A . € S > } J  J

L
=  o 1 jw i

2 _, 2 _, ~rfi~m} / 2 .3—1 
5L2-

-

which is o (1 ) by m 5 =  O  (n4_5c) and L =  O  (In M ) .  Hence, T32 =  o (1).

HDB show that the first term of T33 is o ( l ) .  For the second term, from the proof of 

lemma 3.2(b), we have for m  < s <  m  (L +  1)

. -•*
In

uniformly in s. Hence,

i _e'A. |  =  _ I x „  =  1nAa + o ( i j ) ,  

| n { |1 - e x p ( - a , ) | } = 0 ( ^ )

uniformly in s. Thus, the second term

L
2 d ^  V '  in f  I1 _  exp ( —̂ *̂ »)l 1 / y  - y  \

°  1 51’ A P jJ—1 {a:A,GBj}
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0 ( m ‘« A ^ )

-

Thus, T33 =  o ( l ) .

Finally, we need to prove that
1 m    1 L __

= ^2 E V - i X f - X J  + n & H  E U . i i X . i - X , )
5=1 +m«-5+« J=1 {aiA.eB,}

-i iV(0,47r2 (l  +  5)  /6) -

For s =  1 +  m°-5+<5, ..., m, HDB show that (X aj- — X .j) /4  satisfies the condition (14) of 

lemma 5.2. For s  =  m  +  1,.. . ,  m  (L -t- 1) ,  we can use the argument in the proof of lemma

3.2 to obtain

\X,i - X . i \ = 0 { \ / j ) = o ( t n ) ,  J 2  ( X . j - X j f - m ,
“  j = 1 { jtA jeB j}

and

E E l^-^lp = E E 0G?)=0 ( e s )  =o(mi»i).
j= l {arA.eBj} i= l  {^A.eB;} '  V =1 J J

Hence (X 3J — X .j) /4  (1 +  E ) , s =  1 +  m°-5+s,..., m (L +  1) , satisfies the condition (14) of

lemma 5.2. Also In M  satisfies the condition for £ in Lemma 5.2, because £2 m 2 m°- 5+A/ n 2 =

O (n~2 -5£m A In2 M )  —♦ 0  by a proper choice of A  and laK In M / m A —► 0 for any K  >  0.

Therefore,
1 m ,  L

— E75 E ^ ( ^ - o - ^ - o l + r ^ E  E U,j (X,j - X . i ) ± N ( f > , i ’?l.l + S)lf>).
s=l+m°-5+« j = 1 {s:A#eflj}

■

7.11 P roof o f  T heorem  5.3

Let

m 1/2  ( £ _  _  77ll/'2 S j = 0  H { 5 :A .€ B j}  V s j  { X s j  X . j )

E i = 0 E {5:A.eB> } ( ^ - ^ ) 2
( d -  d) =

Z^J=0 A,

rn YJj= 0  S Z {5:A ,eB j > £»j (Xsj  — X.J)

£ y = 0  £ {5:A.6 Bj> ( * « f  -  ^ d ) 2 m V 2

=  Vl +  V2.
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Now

v  _  _______ rn_______ E j= oE {a:A.eBj} (X *i ~  x j )  £»i _d N  ( Q * 2 \
2 4 ( l + E ) m  +  o (m )  m1/ 2 \  ’ 2 4 ( 1 + —) /

giving the required result. ■

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

154

8 Monte Carlo simulation results
Table 2. G ((ai,  a2) =  (-0 -5 ,0 .0 )) , d  =  0.3

BIAS VAR MSE BIAS VAR MSE BIAS VAR MSE
n =  200  (m =  31) n  =  500 (m =  56) n =  1000 (m =  89)

dG P H -0.0221 0.0156 0.0161 -0.0190 0.0073 0.0077 0.0252 0.0065 0.0071
dpooled -0.0580 0.0148 0.0182 -0.0400 0.0071 0.0087 0.0167 0.0068 0.0070

d G P H  (3m) -0.3242 0.0051 0.1102 -0.1439 0.0020 0.0228 -0.0800 0.0014 0.0078
dpooledijrl) 0.0918 0.0647 0.0731 0.0246 0.0176 0.0182 0.0207 0.0092 0.0096

Table 3. H ((0 1 , 02) = (0.0,0.0)),  d =  0.3
BIAS VAR MSE BIAS VAR MSE BIAS VAR MSE

n =  200  (m  == 31) n =  500 (m == 56) n  =  1000 (m =  89)
d G P H 0.0026 0.0154 0.0154 -0.0035 0.0073 0.0073 0.0343 0.0065 0.0077
dpooled 0.0019 0.0148 0.0148 -0.0046 0.0071 0.0071 0.0374 0.0066 0.0080

dGPH($m) -0.0478 0.0050 0.0073 -0.0118 0.0021 0.0022 -0.0015 0.0014 0.0014
d-pooledipl) 0.1174 0.0708 0.0846 0.0323 0.0177 0.0187 0.0278 0.0096 0.0104

Table 4. I ( ( a i , a 2) =  (0.5,0.0)),  d =  0.3
BIAS VAR MSE BIAS VAR MSE BIAS VAR MSE

n = 200  (m =  31) n =  i500 (m =  56) n =  1000  (m =  89)
dG P H 0.1697 0.0158 0.0446 0.0932 0.0075 0.0162 0.0992 0.0065 0.0163
dpooled 0.1936 0.0152 0.0527 0.1203 0.0072 0.0217 0.1281 0.0066 0.0230

d G P H ($ rn ) 0.3160 0.0049 0.1047 0.2888 0.0021 0.0855 0.2461 0.0014 0.0620
dpooled(jTl) 0.2059 0.0712 0.1136 0.0793 0.0174 0.0237 0.0593 0.0097 0.0132
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Table 5. A  ( ( a i , a 2) =  (-0 -6 , - 0 . 6 ) ) ,  d  =  0.3
BIAS VAR MSE BIAS VAR MSE BIAS VAR MSEJS§<NIIe =  31) 7 i  =  500 ( t t i =  56) 71 =  1000 (771 =  89)

d G P H -0.0988 0.0151 0.0249 -0.0539 0.0073 0.0102 0.0063 0.0067 0.0067

d p o o l e d -0.1629 0.0148 0.0413 -0.1240 0.0070 0.0224 -0.0376 0 . 0 0 6 8 0.0083
d G P H  ( 3 m ) -0.5242 0.0042 0.2789 -0.4990 0.0020 0.2510 -0.2886 0.0015 0.0848
d p o o l e d ( m ) 0.0352 0.0539 0.0552 0.0052 0.0170 0.0170 0.0096 0.0089 0.0090

Table 6 . B ( (a i , a 2) =  (0.6, - 0 .6 ) ) , d  =  0.3
BIAS VAR MSE BIAS VAR MSE BIAS VAR MSE

n  =  200 (m =  31) n  =  500 ( m =  56) 71 =  1000 (771 =  89)

d G P H -0.2376 0.0152 0.0717 -0.1079 0.0074 0.0190 -0.0261 0.0066 0.0073

d p o o l e d -0.1286 0.0147 0.0313 -0.1003 0.0071 0.0171 -0.0384 0.0067 0.0082
d G P H  (3m ) 0.1692 0.0042 0.0328 -0.0821 0.0021 0.0088 -0.2384 0.0014 0.0582

d p o o l e d i m ) 0.0127 0.0731 0.0732 -0.0156 0.0181 0.0183 -0.0011 0.0094 0.0094

Table 7. C  ( (a lt a2) =  (1.0, - 0 .6 ) ) ,  d  =  0.3
BIAS VAR MSE BIAS VAR MSE BIAS VAR MSE

7 i  =  2 0 0  ( m =  31) n  =  500 ( m =  56) n  =  1000 (tti =  89)

d G P H -0.2478 0.0153 0.0767 -0.1574 0.0074 0.0322 -0.0585 0.0066 0.0101

d p o o l e d -0.1350 0.0148 0.0330 -0.0604 0.0072 0.0108 -0.0179 0.0066 0.0069
d G P H  ( 3 m ) 0.4783 0.0051 0.2339 0.2561 0.0021 0.0677 0.0635 0.0015 0.0055
dpooled̂ TTl) 0.0018 0.0728 0.0728 -0.0353 0.0187 0.0200 -0.0155 0.0094 0.0096
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